11 research outputs found

    The FoxO Family in Cardiac Function and Dysfunction

    Get PDF
    The Forkhead family of transcription factors mediates many aspects of physiology, including stress response, metabolism, commitment to apoptosis, and development. The Forkhead box subfamily O (FoxO) proteins have garnered particular interest due to their involvement in the modulation of cardiovascular biology. In this review, we discuss the mechanisms of FoxO regulation and outcomes of FoxO signaling under normal and pathological cardiovascular contexts

    The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    Get PDF
    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging

    Back to your heart: Ubiquitin proteasome system-regulated signal transduction

    Get PDF
    Awareness of the regulation of cell signaling by post-translational ubiquitination has emerged over the past 2 decades. Like phosphorylation, post-translational modification of proteins with ubiquitin can result in the regulation of numerous cellular functions, for example, the DNA damage response, apoptosis, cell growth, and the innate immune response. In this review, we discuss recently published mechanisms by which the ubiquitin proteasome system regulates key signal transduction pathways in the heart, including MAPK JNK, calcineurin, FOXO, p53, and estrogen receptors α and β. We then explore how ubiquitin proteasome system-specific regulation of these signal transduction pathways plays a role in the pathophysiology of common cardiac diseases, such as cardiac hypertrophy, heart failure, ischemia reperfusion injury, and diabetes

    Endothelial inflammatory transcriptional responses to an altered plasma exposome following inhalation of diesel emissions

    Get PDF
    Air pollution, especially emissions derived from traffic sources, is associated with adverse cardiovascular outcomes. However, it remains unclear how inhaled factors drive extrapulmonary pathology

    Metabolic cycling in control of glucose-stimulated insulin secretion

    No full text
    Glucose-stimulated insulin secretion (GSIS) is central to normal control of metabolic fuel homeostasis, and its impairment is a key element of β-cell failure in type 2 diabetes. Glucose exerts its effects on insulin secretion via its metabolism in β-cells to generate stimulus/secretion coupling factors, including a rise in the ATP/ADP ratio, which serves to suppress ATP-sensitive K+ (KATP) channels and activate voltage-gated Ca2+ channels, leading to stimulation of insulin granule exocytosis. Whereas this KATP channel-dependent mechanism of GSIS has been broadly accepted for more than 30 years, it has become increasingly apparent that it does not fully describe the effects of glucose on insulin secretion. More recent studies have demonstrated an important role for cyclic pathways of pyruvate metabolism in control of insulin secretion. Three cycles occur in islet β-cells: the pyruvate/malate, pyruvate/citrate, and pyruvate/isocitrate cycles. This review discusses recent work on the role of each of these pathways in control of insulin secretion and builds a case for the particular relevance of byproducts of the pyruvate/isocitrate cycle, NADPH and α-ketoglutarate, in control of GSIS

    The Ubiquitin Ligase CHIP Prevents SirT6 Degradation through Noncanonical Ubiquitination

    No full text
    The ubiquitin ligase CHIP (carboxyl terminus of Hsp70-interacting protein) regulates protein quality control, and CHIP deletion accelerates aging and reduces the life span in mice. Here, we reveal a mechanism for CHIP's influence on longevity by demonstrating that CHIP stabilizes the sirtuin family member SirT6, a lysine deacetylase/ADP ribosylase involved in DNA repair, metabolism, and longevity. In CHIP-deficient cells, SirT6 protein half-life is substantially reduced due to increased proteasome-mediated degradation, but CHIP overexpression in these cells increases SirT6 protein expression without affecting SirT6 transcription. CHIP noncanonically ubiquitinates SirT6 at K170, which stabilizes SirT6 and prevents SirT6 canonical ubiquitination by other ubiquitin ligases. In CHIP-depleted cells, SirT6 K170 mutation increases SirT6 half-life and prevents proteasome-mediated degradation. The global decrease in SirT6 expression in the absence of CHIP is associated with decreased SirT6 promoter occupancy, which increases histone acetylation and promotes downstream gene transcription in CHIP-depleted cells. Cells lacking CHIP are hypersensitive to DNA-damaging agents, but DNA repair and cell viability are rescued by enforced expression of SirT6. The discovery of this CHIP-SirT6 interaction represents a novel protein-stabilizing mechanism and defines an intersection between protein quality control and epigenetic regulation to influence pathways that regulate the biology of aging

    Back to your heart: Ubiquitin proteasome system-regulated signal transduction

    No full text
    Awareness of the regulation of cell signaling by post-translational ubiquitination has emerged over the past 2 decades. Like phosphorylation, post-translational modification of proteins with ubiquitin can result in the regulation of numerous cellular functions, for example, the DNA damage response, apoptosis, cell growth, and the innate immune response. In this review, we discuss recently published mechanisms by which the ubiquitin proteasome system regulates key signal transduction pathways in the heart, including MAPK JNK, calcineurin, FOXO, p53, and estrogen receptors α and β. We then explore how ubiquitin proteasome system-specific regulation of these signal transduction pathways plays a role in the pathophysiology of common cardiac diseases, such as cardiac hypertrophy, heart failure, ischemia reperfusion injury, and diabetes
    corecore