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Abstract
Awareness of the regulation of cell signaling by post-translational ubiquitination has emerged over
the past 2 decades. Like phosphorylation, post-translational modification of proteins with ubiquitin
can result in the regulation of numerous cellular functions, for example, the DNA damage
response, apoptosis, cell growth, and the innate immune response. In this review, we discuss
recently published mechanisms by which the ubiquitin proteasome system regulates key signal
transduction pathways in the heart, including MAPK JNK, calcineurin, FOXO, p53, and estrogen
receptors α and β. We then explore how ubiquitin proteasome system-specific regulation of these
signal transduction pathways plays a role in the pathophysiology of common cardiac diseases,
such as cardiac hypertrophy, heart failure, ischemia reperfusion injury, and diabetes.
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Introduction
Over the past 2 decades, our understanding of the role of ubiquitination in regulating cell
signaling has evolved. Like phosphorylation, post-translational modification of proteins with
ubiquitin can result in the regulation of numerous cellular functions, such as the DNA
damage response, apoptosis, cell growth, and the innate immune response. Recently, studies
have described how ubiquitination in the heart regulates key signaling transduction
pathways important in common cardiac diseases, including cardiac hypertrophy, heart
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failure, ischemia reperfusion injury, and diabetes. In this review, we explore the mechanisms
by which the ubiquitin proteasome system (UPS) specifically regulates signal transduction
and then put into context how these mechanisms may influence the pathophysiology of
common cardiac diseases. This is an emerging and vast field of study and, as such, it is not
been possible to cover all aspects in depth. However, this review represents a comprehensive
overview of new and exciting data as they relate to the heart.

Ubiquitination is a multi-step process that occurs at several levels of signal
transduction

The placement of ubiquitin on specific protein substrates is regulated by three enzymes: E1
(ubiquitin-activating); E2 (ubiquitin-conjugating); and E3 (ubiquitin ligase). The specificity
of the ubiquitination process is afforded by the ubiquitin ligase (of which over 500 have
been identified) which recognizes and interacts with specific substrates on to which
ubiquitin is then attached. Ubiquitin attaches to the substrate via an isopeptide bond between
the C-terminus of ubiquitin and a lysine residue on the substrate. Since ubiquitin itself
contains 7 lysines (K6, K11, K27, K29, K33, K48, and K63) ubiquitin can also bind to other
ubiquitin molecules, thereby forming a ubiquitin chain on the targeted substrate. The fate of
the ubiquitinated substrate depends on which lysine residue the attached ubiquitin chain is
formed. Canonical ubiquitin chains bind via K48 residues and are recognized by the
proteasome which targets the ubiquitinated substrate for degradation. Other polyubiquitin
chains, such as the K63-linked chains, generally affect substrate activity via non-proteolytic
mechanisms [1–4]. However, these atypical ubiquitin chains may also be involved in protein
degradation depending on the context and presence of other types of ubiquitin chains that
are also present on the substrate [5–7]. However, not every ubiquitination reaction results in
the formation of a ubiquitin chain on a 4 substrate. In some instances, a single ubiquitin
molecule will be added to a substrate (monoubiquitination), resulting in an alteration in the
activity of the substrate without leading to its degradation. For example, monoubiquitination
regulates nuclear localization and activity of transcription factors, gene expression (via
histones), endocytosis, and trafficking of receptors, transporters, and channels [8–10]. With
hundreds of ubiquitin ligases identified, each specific for a handful of target proteins, it is
not surprising that some of these targets are involved in signaling transduction pathways, the
ubiquitination of which results in both stimulation and inhibition of downstream signaling.
Here we present emerging evidence that the UPS regulates signaling occurring through the
MAPK JNK, calcineurin, FOXO, p53, and the estrogen receptors α and β. We then discuss
this regulation in the context of common cardiac diseases.

The UPS regulates JNK signaling in the heart
JNK signaling in the heart

Activation of the JNK signaling pathways occurs in response to different stimuli, including
inflammatory cytokines and stressors such as ischemia reperfusion (I/R), UV radiation,
oxidant stress, hyperosmolality, ER stress, and DNA damage [11, 12]. G protein-coupled
receptors, growth factors, and non-canonical Wnt signaling are also known to induce the
activation of JNK signaling [13, 14], the latter being critical in cardiac development [15].
During early heart development, non-canonical Wnt signaling involving activation of the
JNK signaling pathway has been implicated in the determination of cardiac cell fate and
morphogenesis of the developing heart, including proper development of the outflow tract
[16, 17].

In the context of cardiac disease, JNK signaling is activated in response to I/R injury [18,
19]. Cells within the myocardium undergo apoptosis in response to I/R injury and the
intracellular pathways through which ischemia induces cell death and other “stress
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responses” in cardiomyocytes have been extensively characterized. In addition to activating
the JNK signaling pathway, cardiac I/R also activates the p38 mitogen-activated protein
kinase pathway [18, 19]. The p38 MAPK signaling pathway is activated during ischemia
and is maintained in an activated state during reperfusion [11, 20]. In contrast, signaling
through the JNK pathway is the only MAPK pathway generally activated during
reperfusion, resulting in the activation of the AP-1 transcription factor and subsequent
cellular apoptosis [21–23], making it a unique pathway during I/R-induced apoptosis.

Regulation of JNK signal transduction by ubiquitination and SUMOylation
There is growing evidence that ubiquitination plays a role in regulating MAPK signaling in
general, and JNK signaling in particular [24], and recent studies have identified cardiac-
specific ubiquitin ligases (E3) that regulate JNK signaling in vivo (described below) [25]
[26]. Post-translational modification of JNK signaling intermediaries with ubiquitin [24] and
ubiquitin-like proteins [27, 28] inhibits JNK signaling by interacting with and inhibiting
activated c-Jun in both cardiac and non-cardiac cells. At least 6 proteins with ubiquitin
ligase activity have been linked to regulation of JNK signaling: MEKK1 [29, 30], Fbw7
[31], DCXhDET1-hCOP1[32], itch [33], MuRF1 [25], and atrogin-1/MAFbx [26], with the
latter 2 recently implicated in regulation of JNK signaling in the heart.

MEKK1 is a MAP3K in the JNK signaling pathway that has protein kinase activity allowing
the downstream activation of MAP2Ks, which in turn activate JNK (see Figure 1)[15]. What
makes MEKK1 unique among MAP3Ks is that it also has ubiquitin ligase activity, which
therefore also allows it to inhibit JNK signaling downstream. Specifically, MEKK1
recognizes and polyubiquitinates phosphorylated c-Jun, which is then degraded by the 26S
proteasome to effectively inhibit JNK signaling [29, 30]. In osmotic stress-induced cell
death in NIH 3T3 cells, MEKK1 exhibits ubiquitin ligase activity toward phosphorylated c-
Jun through its PHD/RING finger domain [30]. Similarly, in neuronal cells, the ubiquitin
ligase Fbw7 ubiquitinates phosphorylated c-Jun and facilitates c-Jun degradation [31],
whereas depletion of Fbw7 results in the accumulation of phosphorylated c-Jun, enhanced
AP-1 activity, and increased neuronal apoptosis [31]. In this way, Fbw7 potently
antagonizes the apoptotic JNK signaling pathways, allowing neurons to tolerate (i.e. to be
protected) from neurotoxic JNK activation [31]. In addition to MEKK1 and Fbw7, two other
ubiquitin ligases, DCXhDET1-hCOP1 and itch, also target c-Jun for ubiquitin-mediated
degradation [34, 35].

The ubiquitin ligases DCXhDET1-hCOP1 and itch were initially reported to regulate JNK
signaling in cancer cell lines and T cells, respectively [36, 37]. The DCXhDET1-hCOP1

complex is made up 5 subunits: human De-etiolated-1 (hDET-1), human constitutively
photomorphogenic 1 (hCOP1), DNA Damage Binding Protein-1 (DDB1), cullin 4A
(CUL4A) and Regulator of Cullins-1 (ROC1) [32]. In HEK293T cells, DCXhDET1-hCOP1

interacts with cJun, targeting it for degradation in a proteasome-dependent manner [32]. In
both HEK293T and U2OS cells, reducing DCXhDET1-hCOP1 levels enhances c-Jun activity
(measured through AP-1 activity) whereas increasing DCXhDET1-hCOP1 levels inhibits AP-1
activity [32]. The ubiquitin ligase itch accumulates in T cells from mice lacking the protein
Itch, characterized by their constantly itching of the skin [37]. The HECT domain of Itch
functions in the ubiquitin-dependent degradation of both cJun and JunB, which accumulated
in the T cells of Itchy mice [37]. The name of this ubiquitin ligase was founded due to the
observation that mice in which this protein is disrupted exhibit severe itching and systemic
dysregulation of the immune system [38]. It was later determined that the itchy phenotype in
these mice is likely due to excessive cytokine production from T cells (specifically TH2
cells) [37], a phenotype that is also exhibited by mice lacking JNK [39, 40]. Subsequent
studies identified that Itch regulated the turnover of cJun/JunB resulting in the dysregulation
of IL-4 in T cells [33]. The number of ubiquitin ligases able to inhibit JNK indicates the
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possible need for redundancy and inhibition at multiple levels in response to
pathophysiologic stimuli. It may additionally indicate a tissue specificity of these systems, a
concept that has not been investigated widely to date.

In addition to ubiquitin-mediated regulation of activity, c-Jun can also be regulated by post-
translational modification of proteins with SUMO (small ubiquitin-like modifier), whereby
ubiquitin ligases place SUMO modifications (rather than ubiquitin molecules) on c-Jun.
Sumoylation of target substrates does not result in substrate degradation, however it does
affect the ability of the substrate to move within the intracellular milieu [41]. In the case of
c-Jun, ubiquitin–like SUMO-1 post-translational modification in non-cardiomyocyte cell
lines restricts the localization of c-Jun to the nucleus, which in turn negatively regulates its
activation of AP-1, without interfering with c-Jun’s ubiquitination state or steady state levels
of protein [42]. Similar to the case of ubiquitination of c-Jun, SUMO-1 post-translational
modification is enhanced when c-Jun is phosphorylated.

Ubiquitin-mediated regulation of JNK signaling in cardiac I/R injury
Like the regulation of JNK signaling in other cell types, recent studies have demonstrated
that the heart also contains ubiquitin ligases capable of regulating JNK signaling.
Specifically, MuRF1, a striated muscle-specific ubiquitin ligase, ubiquitinates intermediaries
in the JNK signaling pathway to inhibit them [25]. Like MEKK1, MuRF1 interacts with c-
Jun preferentially when phosphorylated, resulting in its polyubiquitinatation and subsequent
proteasomal degradation [25]. This in turn inhibits downstream AP-1 activity, which, among
other things, leads to a decrease in apoptosis [25]. In the H9C2 cardiac derived cell line,
increasing MuRF1 protects against simulated I/R injury-induced apoptosis [25]. Conversely,
knocking down MuRF1 expression with siRNA enhances AP-1 activity and subsequent
apoptosis in this system. MuRF1 is also cardioprotective in the hearts of MuRF1 Tg+ mice
(in which cardiac MuRF1 is selectively overexpressed) challenged with both global I/R
injury and I/R induced by occlusion of the left anterior descending coronary artery in vivo
[25]. In these mice, recovery from decreased cardiac function caused by global I/R injury is
significantly heightened compared to wild-type mice [25]. Similarly, MuRF1 Tg+ mice
exhibit a significant reduction in the ratio of area of infarct/area of risk (~10% affected area
vs. 25% in wild-type animals) as well as a decrease in functional deficits (determined by
echocardiography) following occlusion of the left anterior descending coronary artery in
vivo [25]. The decrease in damage and functional deficits in the hearts of MuRF1 Tg+ mice
correlates with a decrease in phospho-c-Jun (but not in other MAPK pathway components
such as phospho-ERK1/2 or phospho-p38) [25]. Consistent with these findings, pretreatment
of MuRF1 Tg+ Mice with the JNK inhibitor SP600125 abolishes the differential
cardioprotection of increased expression of cardiac MuRF1, illustrating again the impact of
MuRF1’s regulation of the JNK signaling pathway in controlling damage associated with
cardiac I/R injury.

Atrogin-1/MAFbx, another muscle-specific ubiquitin ligase, also regulates JNK signaling in
the heart. However, unlike MEKK1 and MuRF1, atrogin-1/MAFbx enhances JNK signaling
by ubiquitinating the JNK phosphatase, thereby mediating its proteasomal degradation.
Degradation of JNK phosphatase increases the amount of phosphorylated/activated c-Jun,
resulting in the enhancement of downstream AP-1 activity [26]. As such, unlike MuRF1’s
protective influence 8 over I/R injury, atrogin-1/MAFbx enhances cardiac susceptibility to
simulated I/R injury in vitro [26]. Increasing atrogin-1/MAFbx expression in the cardiac-
derived cell line H9C2 enhances I/R-induced apoptosis as determined by TUNEL staining.
In addition, increasing expression of atrogin-1/MAFbx in H9C2 cells after I/R decreases the
level of the anti-apoptotic protein Bcl-2, and increases the pro-apoptotic proteins Bax,
cleaved caspase-9, and cleaved caspase-3. Conversely, knocking down atrogin-1/MAFbx
and challenging cardiomyocytes to I/R injury results in protection against apoptosis [26].
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The pro-apoptotic effect of atrogin-1/MAFbx in I/R injured H9C2 cells is mediated in part
by atrogin-1/MAFbx’s ubiquitination of MKP-1, which results in its degradation and
subsequent enhancement of JNK-mediated apoptosis. Together, these studies illustrate how
the UPS regulates JNK signaling in the context of protein kinase regulation of I/R mediated
injury in the heart.

UPS regulation of calcineurin signaling
Calcineurin Signaling in the heart

Calcineurin, also referred to as protein phosphatase 2B (PP2B), is a calcium-sensitive
protein that dynamically responds to cardiac stress. Originally identified by its calcium
binding properties in neuronal tissue [43], calcineurin has since been shown to play an
important role in heart development, maintenance, and stress responses. The main target of
calcineurin’s phosphatase activity is the transcription factor NFAT, which translocates to the
nucleus following calcineurin-dependent dephosphorylation [44]. In cardiomyocytes, NFAT
associates with transcription factors such as GATA4 and MEF2 [45, 46]. NFAT activity
leads to transcription of genes such as α-actin, endothelin-1, atrial natriuretic factor (ANF),
and β-myosin heavy chain, which promote hypertrophic growth pathways associated with
the fetal gene programming [47]

Regulation of calcineurin signal transduction by ubiquitination
Because calcineurin’s main molecular target is NFAT, calcineurin signaling can be blunted
by proteins that target NFAT. The kinases DYRK1A, DYRK2, GSK3B, and CK1 have each
been shown to inhibit NFAT activity by phosphorylation that leads to NFAT nuclear
exclusion [48, 49]. This phosphorylation also appears to promote NFAT degradation in a
ubiquitin-dependent manner [50]. In cell culture, NFAT protein levels and transcriptional
activity are inversely proportional to the abundance of wild-type ubiquitin, whereas
overexpression of a mutant form of ubiquitin that cannot form canonical chains has no effect
on the levels of NFAT [50]. Likewise, NFAT protein levels increase dramatically in cells
treated with a proteasome inhibitor, suggesting that proteasomal degradation of NFAT is a
method by which cells regulate the level of this protein [50]. In cardiomyocytes,
overexpression of constitutively-active GSK3β increases NFAT turnover and decreases
NFAT transcriptional activity, whereas phenylephrine administration, which activates
calcineurin, appears to prevent NFAT ubiquitination and increase NFAT transcriptional
activity [50]. Although the exact mechanism by which GSK3β regulates NFAT protein level
and activity is not clear, it has been suggested that GSK3β-mediated phosphorylation
improves NFAT recognition by an as yet unidentified ubiquitin ligase [50].

Cardiac-specific regulation of calcineurin signaling by the UPS
In the heart, the ubiquitin ligase atrogin-1/MAFbx inhibits calcineurin activity through two
distinct mechanisms. First atrogin-1/MAFbx activates FoxO transcriptional activity through
atypical (K63) ubiquitination (discussed below), thereby repressing calcineurin-dependent
cardiac hypertrophy [51]. Second, atrogin-1/MAFbx associates with Cul1, Roc1, and Skp1
to ubiquitinate and degrade calcineurin, attenuating agonist-induced calcineurin activity,
hypertrophy, activation and nuclear translocation of NFAT and subsequent fetal gene
expression profile associated with hypertrophy [52, 53]. Transgenic mice in which cardiac
expression of atrogin-1/MAFbx is increased have normal baseline cardiac function but are
resistant to pressure overload-induced cardiac hypertrophy [53]. Despite the lack of
hypertrophic response, these mice do develop pathological changes associated with pressure
overload, specifically significant thinning of the left ventricular wall, resulting in dilation of
the ventricle, an increase in left ventricular end systolic dimensions and a decrease in
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ejection fraction, demonstrating the importance of a balance between protein synthesis and
degradation mechanisms in cardiac pressure overload.

Proteasomal inhibition and calcineurin/NFAT signaling in cardiomyocytes
In cultured cardiomyocytes, knockdown of atrogin-1/MAFbx with siRNA results in
enhanced calcineurin expression and phosphatase activity as well as agonist-induced
hypertrophy [53]. Mice treated with the proteasome inhibitor MG626 for 24 hrs exhibit
increased NFAT activity, but no change in calcineurin activity [54]. However,
cardiomyocytes treated with MG626 display an increase in nuclear NFAT translocation that
is dependent on calcineurin activity. When cells are stimulated with norepinephrine, to
induce hypertrophy, in the presence of MG262, cells increase in length, but not in width, a
characteristic commonly associated with cardiomyocytes underlying chamber dilation in
chronic heart failure [55]. When mice are treated with the proteasome inhibitor Bortezomib,
they develop cardiac hypertrophy equivalent to what is seen when mice undergo TAC.
When proteasome inhibition is induced in conjunction with pressure overload, lethality is
increased (compared to TAC treatment alone) and increased signs of left ventricular dilation
and dysfunction are evident [54].

The role of proteasomal regulation of calcineurin/NFAT signaling in desmin-related
cardiomyopathy

In cardiomyocytes isolated from D7-des transgenic mice (a mouse model of desmin-related
cardiomyopathy), calcineurin protein levels are increased, as is NFAT activity [54].
Interestingly, MT-des, a mutant form of the desmin protein that has been linked to desmin-
related cardiomyopathy [56] increases calcineurin protein expression in cultured
cardiomyocytes [54]. This, together with evidence of proteasomal insufficiency in desmin-
related cardiomyopathy [57] offers an explanation for the cardiac hypertrophy and
subsequent heart failure associated with this condition.

UPS regulation of FoxO Signaling
FoxO signaling in the heart

FoxOs are a subfamily of the Forkhead winged helix transcription factor superfamily, which
recognize a DNA binding domain referred to as the Forkhead box (Fox). The FoxO family
of transcription factors plays an important role in the development, maintenance, and stress
response of the heart. Several members of the FoxO family (including FoxC1, FoxC2,
FoxO1 and FoxP1) are critical during cardiogenesis: mice in which these proteins have been
deleted exhibit severe arterial and cardiac defects and early lethality [58]. In the mature
animal, FoxO1, FoxO3, and FoxO4 play overlapping and complementary roles in the heart
by transcribing genes involved in oxidative stress response, hypertrophy prevention, and
metabolic regulation [59]. Given this expansive repertoire of functions, it is not surprising
that FoxO signaling is regulated by numerous post-translational modifications such as
phosphorylation, glycosylation, acetylation and ubiquitination [60].

Regulation of cardiac FoxO signal transduction
FoxO activity is regulated by AKT, also known as protein kinase B. In the heart, the AKT
signaling pathway is activated by increased cardiac demand due to exercise training,
pressure overload, and nutrition status [60, 61]. Signaling through the insulin/IGF receptor
tyrosine kinase, integrins, and some G-protein coupled receptors activates PI3K, which
generates PIP3 at the plasma membrane [62]. PIP3 production recruits AKT to the plasma
membrane, where AKT is phosphorylated and activated by PDK1 [63] and mTOR [64] at
T308 and S473, respectively. Activated AKT can then phosphorylate a plethora of targets
that are generally involved in cell growth and apoptosis evasion. AKT phosphorylation also
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allows AKT to enter the nucleus, where it phosphorylates FoxO [65]. This phosphorylation
serves two purposes: it masks a FoxO nuclear localization sequence [66] and stimulates
association between FoxO and a subset of nuclear 14-3-3 proteins, causing FoxO nuclear
export, cytosolic sequesterization, and activity inhibition (see Figure 2) [67, 68].

Regulation of FoxO activity by ubiquitination
Once in the cytosol, AKT-phosphorylated FoxO1/3 is susceptible to proteasome-mediated
degradation [69]. AKT’s phosphorylation of FoxO1 at S256 permits FoxO1 to associate
with Skp2, the main ubiquitin ligase targeting FoxO1, which leads to FoxO1
polyubiquitination and degradation [70]. In a similar manner, FoxO1 S256 phosphorylation
in smooth muscle cells allows association with the ubiquitin ligase CHIP (also called Stub1),
subsequently leading to FoxO1 degradation [71]. Other kinases can promote FoxO
degradation via phosphorylation at different residues. FoxO3 phosphorylation by ERK at
S294, S344, and S425 leads to association with the ubiquitin ligase MDM2, causing FoxO3
polyubiquitination and degradation [72], while IκB-dependent phosphorylation at S644 also
leads to FoxO3 polyubiquitination and degradation [73]. Finally, COP1, an insulin-regulated
ubiquitin ligase that is involved in mammalian cell survival, growth and metabolism,
degrades FoxO1 resulting in a reduction of FoxO1-target genes such as glucose-6-
phosphatase and phosphoenolpyruvate carboxykinase, both of which play an important role
in gluconeogenesis [74] (see Figure 3).

FoxO activity can also be regulated via monoubiquitination. However, unlike
polyubiquitination that results in the degradation of FoxO, monoubiquitination causes an
increase in FoxO activity. Following the onset of oxidative stress, FoxO4 is
monoubiquitinated by MDM2, which increases FoxO4 nuclear localization and
transcriptional activity (see Figure 3) [75]. However, this modification can be reversed by
the activity of the deubiquitinating enzyme USP7, which increases FoxO4 nuclear export
without affecting FoxO half-life [76]. Additionally, oxidative stress causes FoxO4 to interact
with Pin1, which enhances the recognition of monoubiquitinated FoxO4 by USP7 to
diminish FoxO4 transcriptional activity [75] .

Ubiquitin-mediated regulation of FoxO signaling in the heart
In cardiomyocytes, atrogin-1/MAFbx suppresses the phosphorylation of FoxO1 and FoxO3
induced by either IGF-1 or insulin [52]. In addition, atrogin-1/MAFbx induces the nuclear
translocation of FoxO1 and FoxO3a and acts as a transactivator (independent of its role in
sequestering FoxO proteins in the nucleus) to enhance transcriptional activity of FoxO [52].
In order to affect these changes in FoxO location and activity, atrogin-1/MAFbx
ubiquitinates the FoxO proteins in a noncanonical manner using lysine 63-linked chains.
This results in ubiquitination of the FoxO proteins but no subsequent proteasomal
degradation. Since atrogin-1/MAFbx is one of the target proteins of FoxO activation (see
Figure 3), enhancement of FoxO’s transcriptional activity by this noncanonical
ubiquitination results in increased expression of atrogin-1/MAFbx, thereby forming a
positive feedback loop [52]. The in vivo significance of atrogin-1/MAFbx’s ubiquitination of
FoxO is demonstrated in transgenic mice expressing increased levels of cardiac-specific
atrogin-1/MAFbx . In these mice, injection of IGF-1 to stimulate AKT-dependent cardiac
hypertrophy results in decreased levels of phosphorylated FoxO1 and FoxO3a and
concomitant increased expression of the FoxO target genes Bim, p27kip1, GADD45, and
SOD2 [52]. In addition, increases in left ventricular mass are significantly inhibited in these
mice, along with other parameters of cardiac hypertrophy. In contrast, when atrogin-1/
MAFbx-deficient mice are subjected to cardiac hypertrophy induced by voluntary wheel
exercise, an exaggerated cardiac hypertrophic response is seen in comparison to wild-type
mice [52]. Although the level of ubiquitinated cardiac FoxO has not been measured in this
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experimental setting, the correlation between atrogin-1/MAFbx levels and FoxO
ubiquitination seen in cardiomyocytes in culture would suggest that atrogin-1/MAFbx-
deficient mice would have decreased levels of noncanonically ubiquitinated cardiac FoxO
proteins, which in turn, would lead to a decrease in activation of FoxO target genes known
to promote catabolism, leading to the enhanced cardiac hypertrophy seen in these mice.

The implication of possible ubiquitin-mediated regulation of FoxO signaling in cardiac
disease

An upregulation of cardiac FoxO expression has been reported associated with myocardial
infarction, myocardial reperfusion injury, heart failure and myocyte hypertrophy [77–80].
For instance, FoxO signaling plays an important role in the response to myocardial
infarction and I/R injury. In mice subjected to MI via left coronary artery ligature for 1–140
days, FoxO1 and FoxO3 levels are upregulated in concert with increased transcription of
KATP channel subunits [81], which are involved in maintaining left ventricular function and
protecting against heart failure. Furthermore, mice expressing a cardiomyocyte-specific
FoxO1/FoxO3 deletion demonstrate decreases in fractional shortening and increases in
ischemic area, fibrosis, and cell death when subjected to myocardial infarction [82].
Although studies like these indicate a role of FoxO signaling in cardiac disease mechanisms,
a role for the ubiquitin-mediated regulation of FoxO signaling has not been implicated.
Nevertheless, such a scenario is feasible given that ubiquitin ligases known to regulate FoxO
signaling in other situations (for example MDM2, atrogin-1/MAFbx and CHIP) have all
been linked to conditions associated with cardiac disease and stress [26] [83, 84].

UPS regulation of p53 signaling
p53 signaling in the heart

p53 is a complex, multi-functional transcription factor that plays critical roles in cellular
functions such as cell cycling, tumor suppression and maintaining DNA stability by
preventing mutations. In the heart, a number of other functions have also been attributed to
p53, including regulation of apoptosis, autophagy and angiogenesis, all of which have
significance in cardiac disease. In addition, p53 has been linked to a number of cardiac
pathologies such as pathologic cardiac hypertrophy, dilated cardiomyopathy, cardiac
ischemic injury and cardiac disease associated with diabetes.

Regulation of p53 signal transduction by ubiquitination
The ubiquitin ligase MDM2 (murine double minute 2) regulates protein levels of p53 by
ubiquitinating p53 via its RING domain [85, 86]. MDM2 catalyzes both mono- and poly-
ubiquitination of p53. Monoubiquitination targets p53 for nuclear export in a dose-
dependent manner [87, 88]. During normal homeostasis, p53 drives the expression of
MDM2, which in turn increases p53’s ubiquitination, leading to an overall decrease in p53
protein levels. Conversely, when stress such as DNA damage occurs, p53 activity decreases,
inhibiting MDM2 transcription and ubiquitin ligase activity, resulting in increased levels of
p53 protein [89]. There are 6 lysines on p53 (see Figure 4) that are ubiquitinated by MDM2,
including lysines 370, 372, 373, 381, 382, and 386 [88, 90]. Despite the fact that MDM2 can
reduce the amount of endogenous p53 in cells [89], there is also evidence that non-
degradative mechanisms of ubiquitin-mediated regulation of p53 is also important. When
the lysines on p53 are replaced with arginines to inhibit ubiquitination, p53 expression levels
are not altered, suggesting that ubiquitination may have more of a regulatory role on p53
activity, as opposed to mediating its proteasomal degradation [91, 92]. Similarly, it has
recently been reported that p53 can be ubiquitinated in its DNA binding domain (see Figure
4) [93]. Interestingly, removal of this domain significantly alters the stability of p53, without
inhibiting all of its degradation, indicating that ubiquitination in this DNA binding domain is
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another method by which p53’s activity is regulated, without leading to proteasomal
degradation. The ubiquitin-mediated regulation of p53 activity by MDM2 is countered by
the deubiquitinating activity of herpesvirus-associated ubiquitin-specific protease (HAUSP)
[94].

MDM2 is not the only ubiquitin ligase involved in the regulation of p53 levels and activity
[95]. Other ubiquitin ligases demonstrated to ubiquitinate p53 include: COP1, Pirh2, CHIP
[96] TOPORS [97, 98], CARP1 and CARP2 [99], ARF-BP1 [100], CBP [101] and
Synoviolin [102]. The fact that p53 can be regulated by all these proteins reflects the
essential role p53 plays in stabilization of the cellular genetic machinery.

Ubiquitin proteasome regulation of cardiac p53 signaling
Elevated levels of cardiac p53 are associated with a number of cardiovascular conditions
including heart failure, cardiac hypertrophy induced by pressure overload and dilated
cardiomyopathy (DCM) [103] [104] [105]. In the case of DCM, a role for ubiquitin-
mediated regulation of p53 has also been found [105]. In hearts from patients with DCM,
p53, MDM2, and HAUSP are all elevated compared to control, non-failing hearts. The fact
that p53 is elevated even in the presence of increased levels of MDM2 suggests that the
concurrent increase in HAUSP, the enzyme responsible for deubiquitinating p53 may be
dominant in this situation. In addition to the increased levels of p53, MDM2 and HAUSP,
hearts from patients with DCM also exhibit increased levels of ubiquitinated proteins in
general, despite elevated levels of proteasomal activity, suggesting that the cardiac UPS in
DCM is overwhelmed and unable to take care of the increase in ubiquitinated proteins,
including p53.

In cardiomyocytes, endogenous p53 associates with CHIP (carboxyl-terminus of Hsp70-
interacting protein), and when CHIP is knocked down (using siRNA techniques) the
expression level of p53 rises, indicating that CHIP functions to limit the level of p53 in
cardiomyocytes [106]. Similarly, hearts isolated from CHIP heterozygous mice (that express
approximately half the level of CHIP that wild-type mice express) exhibit increased levels of
p53 expression, again demonstrating that CHIP functions to maintain a low level of p53
expression under physiological conditions. When cardiomyocytes are treated with CoCL2 to
induce a hypoxic reaction, p53 levels increase concomitantly with a decrease in CHIP
expression. However, if CHIP is ectopically expressed in cells before a hypoxic insult is
given, p53 levels drop and cellular apoptosis is inhibited [106]. Similarly, promoting CHIP
function using a HSP90 inhibitor (17-AAG) also prevents p53 accumulation and apoptosis
in cardiomyocytes both in vivo and in vitro [106], suggesting that CHIP may offer a
therapeutic target for p53-mediated apoptosis associated cardiac conditions that induce
hypoxic stress. The in vivo significance of CHIP-mediated ubiquitination of cardiac p53 is
illustrated in the case of myocardial infarction. Following myocardial infarction, p53
accumulates, inducing apoptosis and lending to the progression of heart failure. This
increased expression of p53 is caused in part by a HIF-1a-dependent decrease in CHIP
expression [106]. Transgenic mice that overexpress cardiac CHIP do not exhibit the same
increase in p53 and, subsequently, don’t suffer from the same degree of cardiomyocyte
apoptosis and subsequent heart failure. These studies suggest that the decreased CHIP that
occurs in the heart in myocardial infarction is one mechanism by which p53 is allowed to
accumulate and induce cardiomyocyte apoptosis.

A potential role for ubiquitin-mediated regulation of cardiac p53 in models of diabetes
Although there are no reports of a link between ubiquitin-mediated regulation of p53 in the
diabetic heart, there is evidence to suggest that such a mechanism may exist. Hyperglycemia
activates p53 in cardiomyocytes to induce apoptosis [107]. Likewise, ventricular myocytes
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exposed to high glucose levels, mimicking diabetic hyperglycemia, exhibit increased p53
phosphorylation and myocyte cell death [108]. Given the fact that CHIP expression is also
increased when cardiomyocytes are challenged with high glucose [109], the possibility
exists that CHIP may play a role in regulating p53-related apoptosis in the diabetic heart,
although additional studies will be needed to clarify whether this relationship exists, or
perhaps could be used as a potential therapeutic mechanism for decreasing cardiac
dysfunction associated with diabetes.

Estrogen receptor signaling pathway
Estrogen receptor signaling in the heart

Estrogen exerts a wide variety of effects on the cardiovascular system, including effects on
vascular function, inflammatory responses, cardiac myocyte and stem cell survival, insulin
sensitivity and metabolism and the development of hypertrophy. These effects of estrogen
are mediated through the activation of estrogen receptors (ER). The estrogen receptor (ER) α
and ERβ are ligand-activated receptors belonging to the nuclear receptor superfamily that
mediate their physiological functions under the control of estrogen. ERα and ERβ exhibit
tissue-specific expression in different species [110], and can regulate each other’s activity in
the same tissue [111]. In the mouse aorta, ERα predominantly upregulates target gene
activity whereas ERβ tends towards inhibitory actions [111]. In contrast, in the mouse heart,
ERβ stimulates more target genes than it inhibits, proving the vast array and tissue and cell
specific nature of the ERs.

Estrogen receptor-mediated effects in the heart are vast. Estrogen can influence the level and
activity of ion channels thereby playing an important role in repolarization of the heart,
cardiac arrhythmias and cardiac contractility [112]. In the cardiac vasculature, estrogen
promotes vascular recovery following injury and reduces atherosclerosis [113, 114].
Estrogen is also protective in other cardiac conditions such as I/R injury, cardiac
hypertrophy, and myocardial infarction [115].

The ubiquitin proteasome system regulates estrogen receptor stability
The activation of nuclear receptors is coupled with their degradation via the UPS pathway
[116–118]. Without ligand, ERs have a half-life of ~4–5 h and undergo constant degradation
[119]. However, even when bound with a ligand, the turnover of ligand-bound ER is
dependent upon the specific ligand to which it is bound. For instance, increasing 17β-
estradiol, heat shock protein (Hsp)90 inhibitors, ATP depletion, and aryl hydrocarbon
agonists all enhance (increase) degradation of the ER [120–123]. In contrast, the partial
agonist/antagonist 4-hydoxytamoxifen (4-OHT), thyroid hormone, and protein kinase K
activators inhibit receptor degradation, thereby increasing ER protein levels [124–126].

The UPS mediated-degradation of ERα occurs by at least 2 different mechanisms,
depending on the presence or absence of ligand. In the presence of ligands, nuclear receptors
do not remain permanently bound to a promoter, but instead undergo cycles of binding and
unbinding [127–129]. This cycling of ligand-bound ERα requires proteasomal activity [130].
In the absence of estrogen, ERα is also ubiquitinated and degraded via the UPS pathway via
a process that is regulated by a chaperone complex containing CHIP, a protein with both
ubiquitin ligase and co-chaperone activities [131–133]. In cells lacking CHIP, degradation
of unliganded ERα does not occur, suggesting a primary role for CHIP in the turnover of
unbound ERα [134]. However, in the presence of estrogen, degradation of ERα occurs to the
same extent in CHIP −/− and CHIP +/+ cells, suggesting that whereas CHIP is involved in
the general protein quality control of ERα, an as yet undetermined ubiquitin ligase(s) is
responsible for the ligand-mediated degradation of ERα [134]. Additional studies have
shown that the estrogen-dependent ubiquitination of ERα requires the AD core region within
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the ligand binding domain of ERα, whereas ubiquitination of the receptor in the absence of
ligand does not [134].

Estrogen receptor signaling in cardiac diseases: could ubiquitin regulation be involved?
In the last couple of years, the evidence demonstrating an involvement of ER signaling in
various cardiovascular conditions has grown immensely. However, unlike the other
signaling pathways discussed in this review, a role for ubiquitin-mediated regulation of this
ER signaling has not been reported. Nevertheless, we believe that inclusion of a brief
discussion of ER signaling in cardiac disease is worthwhile in the context of this review, as
it highlights a burgeoning area of research in which ubiquitin-mediated signal modulation
may prove to be important.

ER signaling in cardiac hypertrophy
Cardiac ERα and ERβ are up-regulated in human aortic stenosis [135]. In response to
hypertension or aortic stenosis-mediated pressure overload, human male hearts exhibit left
ventricular (LV) dilatation or eccentric hypertrophy, whereas female hearts maintain normal
chamber size but develop increased wall thickness, consistent with concentric hypertrophy
[136]. Estrogen exerts beneficial effects on cardiac remodeling by reversing pressure
overload-induced LV dilatation and systolic dysfunction, and prevents decreased cardiac
contractility following TAC hypertrophy [137, 138] [139]. The beneficial effects of 17β-
estradiol replacement on LV and myocyte hypertrophy is associated with a reduction in the
TAC-induced increase in calcineurin protein levels and activity [139]. ERβ specifically
modulates the cardioprotective effects of E2 in pressure overload induced cardiac
hypertrophy [140–142]. Moreover, recent studies have identified that the ERβ axis is
differentially regulated in pressure overload induced hypertrophy by regulating
inflammatory pathways, mitochondrial bioenergetics, and oxidative stress-related pathways
[143]. These mechanisms may explain the beneficial effects of E2 on cardiac hypertrophy.

ER signaling in ischemia reperfusion injury
Recent studies have elegantly demonstrated a role of estrogen and the activation of ERα and
ERβ in the cardioprotection against experimentally-induced I/R injury seen in females (see
recent comprehensive review by Deschamps, et al., 2010 [144]). These are fascinating
findings given the lower incidence of cardiovascular disease that is seen in pre-menopausal
human females [145–147]. Both acute and chronic ERα agonist treatment has been reported
to be cardioprotective in I/R injury, regardless of whether treatment is given before or after
the onset of the I/R insult [148] [149, 150], whereas genetic deletion of functional ERα
results in increased susceptibility to I/R injury [151]. Furthermore, E2 administered to ERα
−/− mice challenged with MI decreases infarct sizes [152], an effect not seen in ERβ −/−
animals [152]. ERβ −/− mice display a consistently enhanced injury in response to I/R,
suggesting a significant cardioprotective role for ERβ [152–155]. A number of mechanisms
have been attributed to estrogen-mediated cardioprotection, including NO, and PI2K/AKT
(see recent comprehensive review by Deschamps, et al., 2010 [144]). Recent studies have
also found that estrogen prevents cardiomyocyte apoptosis by suppressing p38-mediated
activation of p53 [156].

Summary
The process that cells go through to recognize extracellular signaling molecules to stimulate
an intracellular response occurs in a highly complex and diverse manner in most cells,
including the cardiomyocyte. The majority of the attention given to these signaling pathways
has previously focused on processes that enhance signaling, mainly by protein kinases.
However, multiple post-translational modifications, including ubiquitination, have recently
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been recognized that regulate signaling in both inhibitory and stimulatory ways. In this
review, we have presented some of the recent studies that have identified how the UPS,
directed by its substrate-specific ubiquitin ligases, regulates signaling mediated by MAPK/
JNK, calcineurin, FOXO, p53, and the estrogen receptors α and β. We highlight the roles
that these signaling pathways play in common cardiac diseases, and how these roles can be
modulated and regulated by the influence of members of the UPS. Together, the studies
presented in this review, highlight the emerging importance of the UPS in cardiac signal
transduction, particularly in pathways significant to cardiac health and disease.

Highlights

> The ubiquitin proteasome system (UPS) regulates signal transduction in the
heart

> The UPS regulates JNK, calcineurin, FOXO, p53, and estrogen receptor
signaling in relevant models of cardiac disease

> Regulation of the UPS can influence outcomes in cardiac hypertrophy, heart
failure, ischemia, and diabetic cardiomyopathy

> The UPS affects cardiac signal transduction pathways significant to cardiac
health and disease.

Non-standard abbreviations

AF1/2 activation function 1/2 domains

AP-1 activator protein 1

AKT protein kinase B

ARF-BP1 ARF binding protein 1

ATM ataxia telangiectasia mutated

CARP 1/2 caspase associated ring protein 1/2

CBP CREB binding protein

CHIP C-terminus of HSC70-Interacting Protein

COP1 constitutively photomorphogenic 1 (ubiquitin ligase)

DBD DNA binding domain

DCM dilated cardiomyopathy

E1 ubiquitin activating enzyme

E2 ubiquitin conjugating enzyme

E3 ubiquitin ligase enzymes

E6-AP E6-associated protein

ERα/β estrogen receptor alpha/beta

Fbw7 F-box and WD repeat domain-containing 7

FOXO forkhead box

GSK3β glycogen synthase kinase-3 β isoform

HAUSP herpesvirus-associated ubiquitin-specific protease
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HSP heat shock protein

I/R ischemia reperfusion

JNK c-Jun N-terminal kinase

SUMO small ubiquitin-like modifier

LBD ligand binding domain

MAPK mitogen activated protein kinase

MAFbx (aka
atrogin-1)

muscle atrophy F-box

MDM2 murine double minute 2

MEKK1 mitogen-activated protein kinase kinase kinase

MKP-1 MAPK phosphatase 1

MI myocardial infarction

MuRF1 muscle ring finger-1

NFAT nuclear factor of activated T cells

p53 tumor protein 53

TOPORS topoisomerase I binding, arginine/serine-rich, E3 ubiquitin
protein ligase

TIGAR TP53-induced glycolysis and apoptosis regulator

TAC trans-aortic constriction

UBC9 ubiquitin-like protein 9

USP ubiquitin specific protease

UPS ubiquitin proteasome system
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Figure 1. Regulation of JNK signaling by the ubiquitin ligases MuRF1 and aAtrogin-1/MAFbx
A. MuRF1 inhibits JNK signaling by preferentially binding phosphorylated c-Jun, poly-
ubiquitinating it and targeting it for degradation by the proteasome in cardiac ischemia
reperfusion injury (Summarized from data by Li, et al., 2011 [25]). Increasing
cardiomyocyte MuRF1 has recently been shown to be cardioprotective in I/R injury both in
vitro and in vivo, in part, by this mechanism, which inhibits JNK-induced apoptosis. B.
Atrogin-1/MAFbx enhances JNK signaling by binding and ubiquitinating the JNK inhibitory
phosphatase MKP-1 and targeting it for degradation by the proteasome (Summarized from
data by Xie, et al., 2009 [26]). Increasing Atrogin-1/MAFbx in culture enhances
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cardiomyocyte susceptibility to I/R injury-induced apoptosis, while inhibiting Atrogin-1/
MAFbx inhibits I/R-induced apoptosis experimentally in vitro.
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Figure 2. Overview of FoxO signaling
Activation of transmembrane receptors by various stimuli leads to activation of AKT. ATK
phosphorylates numerous targets, including FoxO transcription factors. AKT-
phosphorylated FoxO is inactivated and shuttled to the cytoplasm via association with
14-3-3 proteins. In the absence of AKT activity, FoxO transcription factors transcribe
ubiquitin ligases, antioxidants, and proapoptotic genes.
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Figure 3. Regulation of FoxO transcription factors by the UPS
A. Multiple ubiquitin ligases can polyubiquitinate and degrade FoxO. However, FoxO
activity can be augmented through B. monoubiquitination or C. noncanonical (K63 linked)
ubiquitination to regulate its activity as described in the text.
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Figure 4. Reported ubiquitin ligases that act upon p53 and the multiple lysines ubiquitinated
that regulate steady state protein levels and/or p53 activity
Adapted from Brooks and Gu, 2011 [38]. ?=potential sites that may be ubiquitinated (not
reported).
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