9 research outputs found

    A comparative perspective on three primate species’ responses to a pictorial emotional Stroop task

    Get PDF
    This study was also supported (in part) by a grant from The David Bohnett Foundation, the Leo S. Guthman Fund, the Chauncey and Marion Deering McCormick Foundation, and, at the time of writing, L.M.H. was supported by the Women’s Board of Lincoln Park Zoo.The Stroop effect describes interference in cognitive processing due to competing cognitive demands. Presenting emotionally laden stimuli creates similar Stroop-like effects that result from participants’ attention being drawn to distractor stimuli. Here, we adapted the methods of a pictorial Stroop study for use with chimpanzees (N = 6), gorillas (N = 7), and Japanese macaques (N = 6). We tested all subjects via touchscreens following the same protocol. Ten of the 19 subjects passed pre-test training. Subjects who reached criterion were then tested on a standard color-interference Stroop test, which revealed differential accuracy in the primates’ responses across conditions. Next, to test for an emotional Stroop effect, we presented subjects with photographs that were either positively valenced (a preferred food) or negatively valenced (snakes). In the emotional Stroop task, as predicted, the primates were less accurate in trials which presented emotionally laden stimuli as compared to control trials, but there were differences in the apes’ and monkeys’ response patterns. Furthermore, for both Stroop tests, while we found that subjects’ accuracy rates were reduced by test stimuli, in contrast to previous research, we found no difference across trial types in the subjects’ response latencies across conditions.Publisher PDFPeer reviewe

    The Evolution of Primate Short-Term Memory.

    Get PDF
    Short-term memory is implicated in a range of cognitive abilities and is critical for understanding primate cognitive evolution. To investigate the effects of phylogeny, ecology and sociality on short-term memory, we tested the largest and most diverse primate sample to date (421 non-human primates across 41 species) in an experimental delayed-response task. Our results confirm previous findings that longer delays decrease memory performance across species and taxa. Our analyses demonstrate a considerable contribution of phylogeny over ecological and social factors on the distribution of short-term memory performance in primates; closely related species had more similar short-term memory abilities. Overall, individuals in the branch of Hominoidea performed better compared to Cercopithecoidea, who in turn performed above Platyrrhini and Strepsirrhini. Interdependencies between phylogeny and socioecology of a given species presented an obstacle to disentangling the effects of each of these factors on the evolution of short-term memory capacity. However, this study offers an important step forward in understanding the interspecies and individual variation in short-term memory ability by providing the first phylogenetic reconstruction of this trait’s evolutionary history. The dataset constitutes a unique resource for studying the evolution of primate cognition and the role of short-term memory in other cognitive abilities.info:eu-repo/semantics/publishedVersio
    corecore