47 research outputs found

    Magnitude representations and counting skills in preschool children

    Get PDF
    When children learn to count, they map newly acquired symbolic representations of number onto preexisting nonsymbolic representations. The nature and timing of this mapping is currently unclear. Some researchers have suggested this mapping process helps children understand the cardinal principle of counting, while other evidence suggests that this mapping only occurs once children have cardinality understanding. One difficulty with the current literature is that studies have employed tasks that only indirectly assess children’s nonsymbolic-symbolic mappings. We introduce a task in which preschoolers made magnitude comparisons across representation formats (e.g., dot arrays vs. verbal number), allowing a direct assessment of mapping. We gave this task to 60 children aged 2;7 - 4;10, together with counting and Give-a-Number tasks. We found that some children could map between nonsymbolic quantities and the number words they understood the cardinal meaning of, even if they had yet to grasp the general cardinality principle of counting

    How do root and soil characteristics affect the erosion-reducing potential of plant species?

    Get PDF
    Plant roots can be very effective in stabilizing the soil against concentrated flow erosion. So far, most research on the erosion-reducing potential of plant roots was conducted on loamy soils. However susceptible to incisive erosion processes, at present, no research exists on the effectiveness of plant roots in reducing concentrated flow erosion rates in sandy soils. Therefore, the prime objective of this study was to assess the erosion-reducing potential of both fibrous and tap roots in sandy soils. Furthermore, we investigated potential effects of root diameter, soil texture and dry soil bulk density on the erosion-reducing potential of plant roots. Therefore, flume experiments conducted on sandy soils (this study) were compared with those on sandy loam and silt loam soils (using the same experimental set up). Results showed that plant roots were very efficient in reducing concentrated flow erosion rates in sandy soils compared to root-free bare soils. Furthermore, our results confirmed that fibrous roots were more effective compared to (thick) tap roots. Dry soil bulk density and soil texture also played a significant role. As they were both related to soil cohesion, the results of this study suggested that the effectiveness of plant roots in controlling concentrated flow erosion rates depended on the apparent soil cohesion. The nature of this soil type effect depended on the root-system type: fine root systems were most effective in non-cohesive soils while tap root systems were most effective in cohesive soils. For soils permeated with a given amount of fibrous roots, an increase of soil bulk density seemed to hamper the effectiveness of roots to further increase soil cohesion and reduce erosion rates. In soils reinforced by tap root systems, the erosion-reducing power of the roots depended on sand content: the higher the percentage of sand, the smaller the erosion-reducing effect for a given amount of roots. This was attributed to more pronounced vortex erosion around the thicker tap roots in non-cohesive soils, increasing soil erosion rates. The results presented in this study could support practitioners to assess the likely erosion-reducing effects of plant root systems based on both root and soil characteristics

    The role of cognitive inhibition in different components of arithmetic.

    Get PDF
    Research has established that executive functions, the skills required to monitor and control thought and action, are related to achievement in mathematics. Until recently research has focused on working memory, but studies are beginning to show that inhibition skills—the ability to suppress distracting information and unwanted responses—are also important for mathematics. However, these studies employed general mathematics tests and therefore are unable to pinpoint how inhibition skills relate to specific components of mathematics. We explored how inhibition skills are related to overall achievement as well as factual, procedural and conceptual knowledge in 209 participants aged 11–12, 13–14 and adults. General mathematics achievement was more strongly related to inhibition measured in numerical compared with non-numerical contexts. Inhibition skills were related to conceptual knowledge in older participants, but procedural skills in younger participants. These differing relationships can shed light on the mechanisms by which inhibition is involved in mathematics

    The interaction of procedural skill, conceptual understanding and working memory in early mathematics achievement

    Get PDF
    Does nonverbal, approximate number acuity predict mathematics performance? Some studies report a correlation between acuity of representations in the Approximate Number System (ANS) and early math achievement, while others do not. Few previous reports have addressed (1) whether reported correlations remain when other domain-general capacities are considered, and (2) whether such correlations are causal. In the present study, we addressed both questions using a large (N = 204) 3-year longitudinal dataset from a successful math intervention, which included a wide array of non-numerical cognitive tasks. While we replicated past work finding correlations between approximate number acuity and math success, these correlations were very small when other domain-general capacities were considered. Also, we found no evidence that changes to math performance induced changes to approximate number acuity, militating against one class of causal accounts

    The interaction of procedural skill, conceptual understanding and working memory in early mathematics achievement

    Get PDF
    This is an Open Access Article. It is published by PsychOpen under the Creative Commons Attribution 4.0 Unported Licence (CC BY). Full details of this licence are available at: http://creativecommons.org/licenses/by/4.0/Does nonverbal, approximate number acuity predict mathematics performance? Some studies report a correlation between acuity of representations in the Approximate Number System (ANS) and early math achievement, while others do not. Few previous reports have addressed (1) whether reported correlations remain when other domain-general capacities are considered, and (2) whether such correlations are causal. In the present study, we addressed both questions using a large (N = 204) 3-year longitudinal dataset from a successful math intervention, which included a wide array of non-numerical cognitive tasks. While we replicated past work finding correlations between approximate number acuity and math success, these correlations were very small when other domain-general capacities were considered. Also, we found no evidence that changes to math performance induced changes to approximate number acuity, militating against one class of causal accounts

    Magnitude Representations and Counting Skills in Preschool Children

    Get PDF
    This is an Accepted Manuscript of an article published by Taylor & Francis Group in Mathematical Thinking and Learning on 7/05/2015, available online: http://www.tandfonline.com/10.1080/10986065.2015.1016811.When children learn to count, they map newly acquired symbolic representations of number onto preexisting nonsymbolic representations. The nature and timing of this mapping is currently unclear. Some researchers have suggested this mapping process helps children understand the cardinal principle of counting, while other evidence suggests that this mapping only occurs once children have cardinality understanding. One difficulty with the current literature is that studies have employed tasks that only indirectly assess children’s nonsymbolic-symbolic mappings. We introduce a task in which preschoolers made magnitude comparisons across representation formats (e.g., dot arrays vs. verbal number), allowing a direct assessment of mapping. We gave this task to 60 children aged 2;7 - 4;10, together with counting and Give-a-Number tasks. We found that some children could map between nonsymbolic quantities and the number words they understood the cardinal meaning of, even if they had yet to grasp the general cardinality principle of counting

    Use of directed acyclic graphs (DAGs) to identify confounders in applied health research: review and recommendations

    Get PDF
    Abstract Background Directed acyclic graphs (DAGs) are an increasingly popular approach for identifying confounding variables that require conditioning when estimating causal effects. This review examined the use of DAGs in applied health research to inform recommendations for improving their transparency and utility in future research. Methods Original health research articles published during 1999–2017 mentioning ‘directed acyclic graphs’ (or similar) or citing DAGitty were identified from Scopus, Web of Science, Medline and Embase. Data were extracted on the reporting of: estimands, DAGs and adjustment sets, alongside the characteristics of each article’s largest DAG. Results A total of 234 articles were identified that reported using DAGs. A fifth (n = 48, 21%) reported their target estimand(s) and half (n = 115, 48%) reported the adjustment set(s) implied by their DAG(s). Two-thirds of the articles (n = 144, 62%) made at least one DAG available. DAGs varied in size but averaged 12 nodes [interquartile range (IQR): 9–16, range: 3–28] and 29 arcs (IQR: 19–42, range: 3–99). The median saturation (i.e. percentage of total possible arcs) was 46% (IQR: 31–67, range: 12–100). 37% (n = 53) of the DAGs included unobserved variables, 17% (n = 25) included ‘super-nodes’ (i.e. nodes containing more than one variable) and 34% (n = 49) were visually arranged so that the constituent arcs flowed in the same direction (e.g. top-to-bottom). Conclusion There is substantial variation in the use and reporting of DAGs in applied health research. Although this partly reflects their flexibility, it also highlights some potential areas for improvement. This review hence offers several recommendations to improve the reporting and use of DAGs in future research

    When is working memory important for arithmetic?: the impact of strategy and age

    Get PDF
    Our ability to perform arithmetic relies heavily on working memory, the manipulation and maintenance of information in mind. Previous research has found that in adults, procedural strategies, particularly counting, rely on working memory to a greater extent than retrieval strategies. During childhood there are changes in the types of strategies employed, as well as an increase in the accuracy and efficiency of strategy execution. As such it seems likely that the role of working memory in arithmetic may also change, however children and adults have never been directly compared. This study used traditional dual-task methodology, with the addition of a control load condition, to investigate the extent to which working memory requirements for different arithmetic strategies change with age between 9-11 years, 12-14 years and young adulthood. We showed that both children and adults employ working memory when solving arithmetic problems, no matter what strategy they choose. This study highlights the importance of considering working memory in understanding the difficulties that some children and adults have with mathematics, as well as the need to include working memory in theoretical models of mathematical cognition

    Maternal iodine status, intrauterine growth, birth outcomes and congenital anomalies in a UK birth cohort.

    Get PDF
    BACKGROUND: Severe iodine insufficiency in pregnancy has significant consequences, but there is inadequate evidence to indicate what constitutes mild or moderate insufficiency, in terms of observed detrimental effects on pregnancy or birth outcomes. A limited number of studies have examined iodine status and birth outcomes, finding inconsistent evidence for specific outcomes. METHODS: Maternal iodine status was estimated from spot urine samples collected at 26-28 weeks' gestation from 6971 mothers in the Born in Bradford birth cohort. Associations with outcomes were examined for both urinary iodine concentration (UIC) and iodine-to-creatinine ratio (I:Cr). Outcomes assessed included customised birthweight (primary outcome), birthweight, small for gestational age (SGA), low birthweight, head circumference and APGAR score. RESULTS: There was a small positive association between I:Cr and birthweight in adjusted analyses. For a typical participant, the predicted birthweight centile at the 25th percentile of I:Cr (59 μg/g) was 2.7 percentage points lower than that at the 75th percentile of I:Cr (121 μg/g) (99% confidence interval (CI) 0.8 to 4.6), birthweight was predicted to be 41 g lower (99% CI 13 to 69) and the predicted probability of SGA was 1.9 percentage points higher (99% CI 0.0 to 3.7). There was no evidence of associations using UIC or other birth outcomes, including stillbirth, preterm birth, ultrasound growth measures or congenital anomalies. CONCLUSION: Lower maternal iodine status was associated with lower birthweight and greater probability of SGA. Whilst small, the effect size for lower iodine on birthweight is comparable to environmental tobacco smoke exposure. Iodine insufficiency is avoidable, and strategies to avoid deficiency in women of reproductive age should be considered. TRIAL REGISTRATION: ClinicalTrials.gov NCT03552341. Registered on June 11, 2018
    corecore