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of life (Parsons and Bynner 2005). Despite educational ini-
tiatives to improve mathematics achievement there has been 
a disappointing lack of improvement in mathematics out-
comes in many Western societies (Vorderman et al. 2011). 
Given this lack of progress, researchers have attempted 
to better understand the cognitive processes that underlie 
mathematics performance. An improved theoretical under-
standing of the factors involved in mathematics processing 
can provide the starting point from which to develop peda-
gogy to support mathematics learning in all young people.

Over the past few decades, researchers have identified 
two classes of cognitive skills that are important for math-
ematics achievement. The first of these concerns domain-
specific skills such as symbol knowledge, counting skill, 
and underlying numerical representations. Alongside these, 
researchers have identified domain-general skills which 
are involved in learning in many areas but which are par-
ticularly important for mathematics (e.g. language, IQ and 
spatial ability). Particular attention has been paid to execu-
tive functions—the skills required to monitor and control 
thought and action—and the role they play in learning and 
performing mathematics (see reviews by Cragg and Gil-
more 2014; Bull and Lee 2014). Three types of executive 
functions have been identified: monitoring and manipulat-
ing information in mind (working memory), suppressing 
distracting information and unwanted responses (inhibi-
tion), and flexible thinking (shifting). To date, few mod-
els of mathematical cognition have considered the role of 
executive function skills, particularly inhibition. LeFevre 
et al. (2010) identified a role for attentional processes in 
their Pathways Model. This model proposed that attentional 
skills have a direct impact on mathematical performance in 
a variety of domains independent of linguistic or quantita-
tive skills. However, the specific role of inhibition skill was 
not specified in this model.

Abstract Research has established that executive func-
tions, the skills required to monitor and control thought and 
action, are related to achievement in mathematics. Until 
recently research has focused on working memory, but 
studies are beginning to show that inhibition skills—the 
ability to suppress distracting information and unwanted 
responses—are also important for mathematics. However, 
these studies employed general mathematics tests and 
therefore are unable to pinpoint how inhibition skills relate 
to specific components of mathematics. We explored how 
inhibition skills are related to overall achievement as well 
as factual, procedural and conceptual knowledge in 209 
participants aged 11–12, 13–14 and adults. General math-
ematics achievement was more strongly related to inhibi-
tion measured in numerical compared with non-numeri-
cal contexts. Inhibition skills were related to conceptual 
knowledge in older participants, but procedural skills in 
younger participants. These differing relationships can shed 
light on the mechanisms by which inhibition is involved in 
mathematics.

1 Introduction

It is well established that learning mathematics presents a 
challenge for many children and young people. This can 
lead to negative consequences for job prospects and quality 
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There is a wealth of evidence that working memory is 
involved in mathematics (see reviews by DeStefano and 
LeFevre 2004; Raghubar et al. 2010). More recently, the 
focus has turned to inhibition and it has been hypothesized 
that individuals with higher levels of inhibitory control are 
more successful in mathematics. In the sections below, we 
first review the existing evidence for a link between inhi-
bition and mathematics before discussing different types 
of inhibition task and different components of arithmetic. 
Finally, we introduce the present study.

1.1  Inhibition and mathematics performance

In the past 5 years there has been a steady increase in the 
number of studies that have explored the role of inhibition 
skills in mathematics performance. The majority of studies 
have employed correlational methods to explore the rela-
tionship between performance on tests of inhibition and 
concurrent mathematics achievement. For example, chil-
dren’s performance on experimental inhibition tasks are 
related to their school mathematics grades (Brock et al. 
2009; Visu-Petra et al. 2011) as well as performance on 
standardized mathematics tests (Nayfield et al. 2013; St 
Clair-Thompson and Gathercole 2006). A smaller number 
of studies have found that inhibition predicts future success 
in mathematics (Blair and Razza 2007; Clark et al. 2010; 
Swanson 2011). Converging evidence for a link between 
inhibition and mathematics comes from studies that have 
compared the inhibition skills of different groups of chil-
dren. Studies by Szucs et al. (2013), Wang et al. (2012) and 
Winegar (2013) found that children with identified math-
ematical learning difficulties performed more poorly on 
inhibition tasks than children with average performance in 
mathematics.

In contrast to these findings, a number of studies have 
failed to find evidence for a link between inhibition skills 
and mathematics: Waber et al. (2006) found weak relation-
ships between experimental measures of inhibition and 
curriculum measures of mathematics performance; Miller 
et al. (2013) found that inhibition skills were not a unique 
predictor of mathematics performance and Monette et al. 
(2011) found that inhibition skills predicted future reading/
writing achievement but not future mathematics achieve-
ment. There is some evidence that inhibition skills may 
only be related to mathematics outcomes if shifting skills 
are not taken into account. Both Bull and Scerif (2001) and 
Van der Ven et al. (2012) found that measures of inhibition 
were no longer related to mathematics once shifting skills 
were included in the model. However, Espy et al. (2004) 
found that inhibition did predict mathematics even after 
controlling for both working memory and shifting skills.

To summarize, there is mixed evidence concern-
ing the relationship between inhibition and mathematics 

performance. Although a number of studies have found a 
positive relationship, this appears to be more nuanced than 
originally proposed. Previous studies have been conducted 
with participants across a wide range of ages. This is an 
important consideration as inhibition skills mature and the 
nature of mathematics content changes with age, thus some 
of the inconsistencies outlined above may reflect changes 
in the role of inhibition skills across age. Two further fac-
tors may be important in explaining these inconsistencies: 
the type of inhibition task and the nature of the mathemat-
ics test. These will be considered in further detail below.

1.2  Types of inhibition task

Previous studies have employed a wide range of tasks to 
assess inhibition. These different tasks tap into varying 
aspects of inhibition skill. A distinction is commonly made 
between response inhibition and interference control (e.g. 
Nigg 2000). Interference control concerns the suppression 
of distracting information, either internal or external, which 
leads to an alternative non-desired response. The Stroop 
task is the best-known measure of interference control. In 
this task participants are required to focus on and respond 
to one aspect of a given stimulus (e.g. the colour of ink a 
word is written in) whilst ignoring other features of the 
stimulus (e.g. the word itself). Stroop tasks have frequently 
been employed in studies exploring the relationship of inhi-
bition with mathematics performance (e.g. Bull and Scerif 
2001; Lemaire and Lecacheur 2011; Monette et al. 2011; 
Navarro et al. 2011; St Clair-Thompson and Gathercole 
2006; Szucs et al. 2013; Van der Ven et al. 2012; Visu-Petra 
et al. 2011).

A second form of inhibition is response inhibition. This 
concerns the suppression of a prepotent motor response and 
is often measured using Go/No-Go or Stop-signal tasks. In 
these tasks participants are required to frequently make one 
type of response unless they receive a signal to withhold the 
response. Inhibitory control performance is indexed by a 
failure to withhold the prepotent response. A smaller num-
ber of studies have used these types of tasks when explor-
ing the relationship with mathematics achievement (De 
Weerdt et al. 2013; Monette et al. 2011; St Clair-Thompson 
and Gathercole 2006). At present there is evidence from 
different studies to suggest that both interference control 
and response inhibition are related to mathematics achieve-
ment (St Clair-Thompson and Gathercole 2006; Szucs et al. 
2013); however, the relative importance of each type of 
inhibition remains unclear. Moreover, the mechanisms by 
which they support mathematics performance are likely to 
differ.

A further distinction that applies to both interfer-
ence control and response inhibition tasks is between 
tasks that involve the inhibition of domain-relevant and 
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domain-irrelevant information. It has been proposed that, 
rather than a single inhibitory system that is applied across 
all domains, there are multiple, domain-specific, inhibitory 
control systems (Egner 2008). Consequently, participants 
may show differing levels of inhibitory control according 
to the nature of the information they are being required to 
inhibit. More importantly here, mathematics achievement 
may be more strongly related to the inhibition of numerical 
information, rather than applying to inhibition skills more 
generally (Bull and Scerif 2001). To explore this question, 
multiple versions of inhibition tasks have been employed 
which involve the inhibition of either numerical or non-
numerical information. For example, alongside the standard 
colour-word stroop, which involves non-numerical infor-
mation, studies have employed stroop tasks that involve the 
inhibition of numerically relevant information. For exam-
ple Szucs et al. (2013), Wang et al. (2012), Zhang and Wu 
(2011), and Navarro et al. (2011) used a number-size stroop 
task in which participants are required to select the numeri-
cally highest digit whilst ignoring the size of the digits on 
the screen (e.g. 3 vs. 5). Bull and Scerif (2001) and Wang 
et al. (2012) have also made use of a number–quantity 
stroop task in which participants are required to name how 
many items are in a set while ignoring the digit itself (i.e. to 
respond “three” to the stimulus 555). Similarly, numerical 
and non-numerical versions of Go/No-Go tasks (De Weerdt 
et al. 2013) and random generation tasks (Winegar 2013) 
have also been developed. These alternative task versions 
have been used to explore the hypothesis that the relation-
ship between inhibition and mathematics achievement is 
specific to the inhibition of numerically relevant informa-
tion, with mixed results.

In favour of the domain-specific inhibition hypothesis, 
both Bull and Scerif (2001) and Navarro et al. (2011) found 
that only performance on the number–quantity version of 
the stroop task and not performance on the colour–word 
version correlated with mathematics achievement. Simi-
larly, when comparing the performance of children with 
and without mathematics learning difficulties, both Szucs 
et al. (2013) and Wang et al. (2012) found that group dif-
ferences were only significant for numerical stroop tasks 
rather than non-numerical versions. However, other studies 
have failed to find domain-specific effects with stroop tasks 
(Zhang and Wu 2011) or Go/No-Go tasks (De Weerdt et al. 
2013).

In summary, there is some evidence to suggest that the 
content of inhibition tasks has an impact on the relation-
ship with mathematics achievement. It is unclear, however, 
if this effect only arises in tasks involving the processing 
of Arabic digits or, alternatively, whether this holds for 
numerically relevant information more generally. Both the 
number–size and number–quantity versions of the stroop 
task, for which domain-specific effects have been observed, 

involve Arabic digits. Bull and Scerif (2001) suggest that, 
before conclusions about domain-specific numerical inhibi-
tion effects can be justified, versions of the stroop task with 
different types of numerical stimuli should be explored. An 
alternative task, which involves numerically relevant infor-
mation but does not include Arabic digits, is the dot com-
parison task. In this task, which was originally developed 
to measure numerical magnitude processing, participants 
are shown pairs of dot arrays and are asked to select the 
more numerous array while ignoring the visual character-
istics (e.g. dot size, density, area) of the arrays. Typically 
two types of trials are included: congruent trials, in which 
the more numerous array also has the larger visual charac-
teristics, and incongruent trials, in which the less numerous 
array has larger visual characteristics. It has been proposed 
that solving incongruent trials of this task therefore has 
significant inhibitory control demands (Fuhs and McNeil 
2013; Gilmore et al. 2013; Nys and Content 2012) and that 
the difference in performance on congruent and incongru-
ent trials therefore provides a measure of inhibition skills. 
In line with this, Szucs and colleagues (2013) found that 
children with mathematics learning difficulties had larger 
congruency effects on a dot comparison task than controls.

Congruency effects on a dot comparison task there-
fore provide a measure of inhibition in a numerical con-
text without the use of Arabic digits themselves. Perfor-
mance on this task can be contrasted with an equivalent 
task involving non-numerical information. A suitable task 
here is the animal-size stroop task that has been used by 
Szucs et al. (2013). In this task participants are shown two 
animal images and are asked to select the animal that is 
larger in real life, while ignoring the size of the images on 
the screen. Again, participants see both congruent trials, 
in which the animal that is larger in real life is also larger 
on screen, and incongruent trials, in which the animal that 
is smaller in real life is larger on screen. Performance on 
incongruent trials of both the dot comparison and animal 
stroop tasks involve ignoring the superficial task-irrelevant 
visual characteristics of the stimuli, but the tasks differ in 
whether the relevant processing is numerical or not. These 
tasks therefore allow us to test whether both domain-spe-
cific (i.e. numerical) and domain-general (i.e. non-numer-
ical) measures of interference control are related to math-
ematics achievement.

1.3  Components of arithmetic

A second factor that may help to explain the conflicting 
results surrounding the relationship between inhibition 
skills and mathematics performance concerns the nature 
of mathematics involved. Rather than being a unitary skill, 
mathematics is a multi-componential construct. Not only 
can different domains be identified, for example arithmetic, 
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algebra, or geometry, but researchers have also identified 
specific components that cut across these domains (see 
review by Rittle-Johnson and Schneider, 2014). Research-
ers typically discriminate factual knowledge, procedural 
skill and conceptual understanding. Factual knowledge 
comprises memorized number facts, for example the addi-
tion and multiplication tables. Procedural skill concerns the 
accurate and efficient execution of operations (e.g. ‘car-
rying’ when adding above 10) and can be thought of as 
‘knowing how’. Conceptual understanding, on the other 
hand, is knowledge of the principles and relationships that 
underlie mathematics (e.g. knowing that addition is the 
inverse of subtraction) or ‘knowing why’. It is well estab-
lished that there are complex relationships among these 
components (Baroody and Dowker, 2003), which are not 
hierarchically ordered. Furthermore, individuals differ 
in their profile of performance across these components, 
and may have strengths in one component but not others 
(Dowker 2005) suggesting that these components rely on 
differential sets of skills.

The vast majority of previous research exploring the 
role of inhibition has involved general standardized or cur-
riculum tests of mathematics, which do not capture these 
individual elements. However, we need to move beyond 
these general tests of mathematics to allow the processes 
by which inhibition supports mathematics performance to 
be understood. It is likely that the precise mechanisms by 
which good inhibition skills support mathematics perfor-
mance differ for factual, procedural and conceptual knowl-
edge (Cragg and Gilmore, 2014).

Considering procedural skills first, there is evidence to 
suggest that inhibition is important in suppressing inef-
ficient, but well rehearsed, strategies in favour of more 
efficient or new strategies. Lemaire and Lecacheur (2011) 
found that children with better inhibitory control made 
more use of the most efficient strategy to solve arithmetic 
problems compared to children with lower levels of inhibi-
tory control. Thus, children with lower levels of inhibitory 
control may be able to generate alternative strategies with-
out difficulty, but are less able to switch between strategies 
flexibly in response to context (c.f. Bull and Scerif 2001 
performance on Wisconsin Card Sorting Task). The ability 
to make adaptive strategy choices is a characteristic of chil-
dren who are proficient with mathematics (Torbeyns et al. 
2006) and thus this mechanism might explain the general 
advantage in mathematics shown by children with good 
inhibition skills.

Turning next to conceptual understanding, Robinson 
and Dubé (2013) found that children with lower levels 
of inhibitory control made more use of mixed procedural 
and conceptual approaches than children with higher lev-
els of inhibitory control, and suggested that poor inhibition 
was associated with an inability to suppress procedural in 

favour of conceptual approaches. Consistently favouring 
procedural over conceptual strategies could interfere with 
the developmental of rich conceptual understanding. Simi-
larly, computational models of conceptual development 
have proposed that inhibition is required to shift attention 
away from procedural solutions to allow underlying numer-
ical relationships to be identified (Siegler and Araya, 2005).

Finally, it has also been suggested that inhibition is 
important for correctly retrieving known number facts from 
memory due to the way in which number facts are stored. It 
has been proposed that addition and multiplication number 
facts are stored in an associative network (Campbell et al. 
2011). As a result, the solutions to alternative problems can 
interfere with the retrieval of a desired solution and inhi-
bition is required to suppress these alternatives. This can 
either occur from interference of “neighbouring” solutions 
(e.g. “42” might interfere with retrieving the answer to 
“6 × 8”) or alternative operations (e.g. “15” might interfere 
with retrieving the answer to “5 + 3”).

There is some evidence to support the hypothesis that 
inhibition skills are differentially related to multiple com-
ponents of mathematics. Winegar (2013) found that, for 
children in Grades 3 and 4, inhibition skills were related 
to arithmetic word problem solving but not to calcula-
tion skills. Similarly, in a study of preschool children Lan 
et al. (2011) found that inhibition was an independent pre-
dictor of counting but not calculation skills. These differ-
ences may reflect a stronger role of inhibition in executing 
sequential procedures rather than recalling number facts.

These studies provide some evidence to suggest that 
inhibition skills play a varying role in different components 
of mathematics; however, these relationships have yet to be 
systematically explored in a single study. Furthermore, the 
nature of these relationships may change as children mature 
and develop more advanced knowledge of mathematics. 
The domain-general processing demands of, for example 
number fact knowledge, will change as children move from 
fragile memory of a small set of number facts through to 
having secure memory of a complete number fact table. It 
is important, therefore, to consider how these relationships 
change over development.

1.4  The present study

Here, we present a study that explores the relationship 
between inhibition skills and mathematics performance in 
detail by addressing three key research questions. First we 
explore whether inhibition skill measured in both numeri-
cal and non-numerical contexts is related to overall mathe-
matics performance. Secondly, we consider whether inhibi-
tion skill is related to the individual components of factual, 
procedural and conceptual knowledge of mathematics as 
well as overall achievement. Finally, we test whether the 
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relationship between inhibition skill and different compo-
nents of mathematics is consistent across ages. To answer 
these questions, we administered numerical (dot compari-
son) and non-numerical (animal stroop) versions of inhibi-
tion tasks as well as tests of individual components of arith-
metic knowledge and overall mathematics achievement to 
adult and child participants.

2  Method

2.1  Participants

A total of 67 11- to 12-year-olds in school Year 7 
(M = 12.25 years, SD = 0.35; 32 female), 67 13- to 
14-year-olds in school Year 9 (M = 14.23 years, SD = 0.3; 
37 female) and 75 young adults (M = 21.28 years, 
SD = 1.69; 48 female) took part in the study. The children 
attended secondary schools in predominantly Caucasian, 
average socio-economic status neighbourhoods of Notting-
ham, UK. Informed consent was received for all children, 
who were given a certificate for taking part. The adults 
were students from Loughborough University and the Uni-
versity of Nottingham. They gave informed consent and 
received a small inconvenience allowance. All participants 
were part of a larger study examining the general thinking 
skills involved in learning and doing mathematics. Ethical 
approval was obtained from the Loughborough University 
Ethics Committee.

2.2  Equipment and materials

The arithmetic and inhibition tasks were created using 
PsychoPy software (Peirce 2007) and run on an HP laptop 
computer. Responses were made using an external numeric 
keypad. For the mathematics tasks, the experimenters 
recorded response times for child participants by pressing 
a key immediately as children began to give their answer.

2.3  Tasks

2.3.1  Mathematics achievement test

The Mathematics Reasoning and Numerical Operations 
subtests of the Wechsler Individual Achievement Test 
(Wechsler 2005) were administered following the stand-
ard procedure. These tests provide a broad assessment of 
curriculum-relevant mathematics achievement. The Math-
ematics Reasoning subtest assesses performance on a series 
of verbally and visually presented word problems cover-
ing problem solving, geometry, measurement, reasoning, 
graphs and statistics. The Numerical Operations subtest is 
a pencil and paper test of arithmetic and algebra. We used 

Mathematics Composite standard scores, which combine 
scores across the two subtests.

2.3.2  Factual knowledge task

This task assessed participants’ knowledge of number 
facts. On each trial an arithmetic problem was presented on 
screen for 3 s and participants were asked to retrieve the 
result without mental calculation. The participants were 
instructed to give their answer verbally, at which point the 
experimenter pressed a key and inputted by the answer. 
Participants were instructed to say “I don’t know” if they 
could not retrieve the answer.

Participants completed four practice trials and then 12 
experimental trials in random order. An additional four easy 
‘motivational trials’ were intermixed with the experimen-
tal trials but were not included in the analysis. Following 
pilot testing, we selected a different set of items for each 
age group (11–12, 13–14 years and adults) to ensure that 
performance was not at floor or ceiling level in any group. 
The problems given to the secondary school students were 
composed of addition and subtraction operations only. The 
problems for the 11- to 12-year-olds involved single-digit 
numbers, and the problems for the 13- to 14-year-olds were 
composed of one single-digit number and one double-digit 
number. The trials given to adult participants were com-
posed of addition, subtraction, multiplication and divi-
sion operations involving one single-digit number and one 
double-digit number. The measure of performance was the 
proportion of items answered correctly within the 3-s pres-
entation time. Higher scores indicated better performance.

2.3.3  Procedural skills task

This task assessed the efficiency with which participants 
could accurately perform arithmetic procedures. On each 
trial an arithmetic problem was presented on screen and 
participants were instructed to solve it using any mental 
method they preferred. To ensure that younger partici-
pants understood that any strategy was acceptable in this 
task, prior to starting the task participants were shown pic-
tures representing different strategies (i.e. counting in your 
head, counting on fingers, decomposition, and retrieval). 
The experimenter described the strategies and told partici-
pants that any of these strategies, or others, could be used 
to solve the task.

Participants were given four practice trials and then 10 
(11–12 years age group) or 12 (13–14 years age group 
and adults) experimental trials. Following pilot testing, the 
operations were designed to be age appropriate, and of a 
difficulty level where retrieval would be unlikely. The tri-
als given to 11- to 12-year-olds were composed of addition 
and subtraction operations and the trials given to 13- to 
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14-year-olds and adult were composed of addition, subtrac-
tion, multiplication and division operations. The problems 
for each age group involved a mix of single and double-
digit numbers. The items in each version were presented in 
one of two orders counterbalanced across participants.

The participants were instructed to give their answer 
verbally, at which point the experimenter pressed a key 
and inputted the answer. After each answer, the partici-
pants were questioned on their strategy use. The measure 
of performance on this task was median response time (RT) 
for correctly answered trials. For ease of analysis, scores 
were multiplied by −1 so that higher scores indicated bet-
ter performance.

2.3.4  Conceptual knowledge task

This task assessed participants’ understanding of con-
ceptual principles underlying arithmetic. On each trial 
an arithmetic problem with the correct answer was pre-
sented on the screen. Once this was read, the experi-
menter pressed ‘return’ and a second, unsolved opera-
tion appeared below the first problem. The participants 
were asked to state whether or not the first problem 
could help solve the second problem, and then were 
asked to explain how. They were discouraged from actu-
ally solving the second problem. Eighteen of the 30 
problem pairs were related. The pairs of problems were 
related by the subtraction-complement principle (e.g. 
113 − 59 = 54 and 113 − 54 =), inverse operations (e.g. 
74 + 57 = 131 and 131 − 74 =), and associative opera-
tions (e.g. 87 − 54 = 33 and 87 − 34 − 20 =). Twelve 
of the problem pairs were unrelated but were designed 
to look superficially similar to the related problems (e.g. 
69 + 54 = 123 and 69 + 45 =). The operations were 
designed to be difficult to solve mentally, to discourage 
the participants from attempting to do so.

Participants were given four practice trials and 30 exper-
imental trials. As with the other arithmetic tasks, a different 
set of problems were used for each age group. The trials 
given to the 11- to 12-year-olds were composed of addi-
tion and subtraction problems involving two operands of 
two and three digit numbers. The trials given to the 13- to 
14-year-olds and adults were composed of addition and 
subtraction problems involving two or three operands of 
double-digit numbers, as well as some multiplication and 
division problems involving single and double-digit num-
bers. The items in each task version were presented in one 
of two orders counterbalanced across participants.

Participants gave their response verbally and the experi-
menter recorded this. The measure of performance was the 
proportion of trials for which the presence or absence of 
a relationship was correctly identified. Higher scores indi-
cated better performance.

2.3.5  Non-numerical inhibition task

To assess participants’ ability to inhibit irrelevant informa-
tion in a non-numerical context, we used an animal–size 
stroop task (based on Szucs et al. 2013). On each trial two 
animal pictures were presented on the screen. One ani-
mal was selected from a set of large animals (e.g. a bear, 
gorilla, and giraffe) and the other animal was selected from 
a set of small animals (e.g. an ant, rabbit, and mouse). 
The participants’ task was to identify which animal was 
the larger in real life. On each trial, one animal image was 
presented with an area on screen four times larger than the 
other image. On congruent trials the animal that was larger 
in real life was also the larger image on the screen, and on 
incongruent trials the animal that was smaller in real life 
was the larger image on the screen (see Fig. 1a). Partici-
pants were required to ignore the size of the images on the 
screen and to respond based on the size in real life only. On 

Fig. 1  Example stimuli for 
a the non-numerical inhibi-
tion task and b the numerical 
inhibition task. Panels on the 
left depict a congruent trial and 
panels on the right depict an 
incongruent trial
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each trial, the images were presented on screen and partici-
pants responded as quickly as possible by pressing one of 
two buttons on the keyboard that corresponded to the side 
of the screen with the larger animal.

Participants completed four experimental blocks each 
containing 48 trials in random order. In two of the experi-
mental blocks 75 % of the trials were congruent and 25 % 
were incongruent and in two of the experimental blocks 
75 % of the trials were incongruent and 25 % were congru-
ent. The blocks were presented in counterbalanced order 
and participants had the opportunity to take breaks during 
the task as needed.

Prior to commencing the task participants were shown 
each of the animal images in one size and asked whether 
the animal was large or small in real life to ensure they had 
the necessary real-world knowledge to perform the task. 
All participants completed this without problem.

Median RTs for correctly solved trials were calculated 
for the congruent and incongruent trials (collapsing across 
blocks). Inhibition score was the difference in RT for con-
gruent and incongruent trials. Larger differences indicate 
lower levels of inhibitory control.

2.3.6  Numerical inhibition task

Participants completed 6 practice trials and 80 experimental 
trials in random order. They were given breaks during the 
task as needed. Mean accuracy was calculated for the con-
gruent and incongruent trials. Inhibition score was the differ-
ence in accuracy for congruent and incongruent trials. Larger 
differences indicate lower levels of inhibitory control.

To assess participants’ ability to inhibit irrelevant infor-
mation in a numerical context, we used a dot comparison 
task. On each trial the participants were shown two sets of 
white dots on a black screen and were instructed to iden-
tify which set had the highest number of dots. The dots 
were created using an adapted version of the matlab script 
provided by Gebuis and Reynvoet (2011). This method 
produced two types of trials. On congruent trials the more 
numerous array has larger dots and the array encompasses 
a larger area. On incongruent trials the more numerous 
array has smaller dots and the array encompasses a smaller 

area (see Fig. 1b). Participants were required to ignore the 
size of the dots and the array on the screen and to respond 
based on the number of dots only. The number of dots in 
each array ranged from 5 to 28 and the ratio between the 
number of dots ranged from 0.5 to 0.8

2.4  Procedure

Each participant was tested individually in a 2-h session. In 
addition to the tasks described above they completed fur-
ther tasks to assess their mathematical and executive func-
tion skills. The tasks were presented in one of two orders 
counterbalanced across participants. The children were 
all tested in quiet rooms away from the classroom and the 
adults were tested in a quiet laboratory.

2.5  Data preparation

The content of the arithmetic tasks varied for each age 
group to prevent floor or ceiling effects on any tasks. As a 
result it was not appropriate to use raw scores in analyses 
involving multiple age groups. We therefore transformed 
raw scores on the arithmetic and inhibition tasks to z-scores 
within each age group and used these in the subsequent 
analyses. Similarly, we used age-standardized scores on 
the mathematics achievement test. Outliers that were more 
than three times the standard deviation from the mean were 
excluded from individual tasks (one participant from the 
non-numeric inhibition task and one participant from the 
mathematics achievement task).

3  Results

3.1  Task performance

Descriptive statistics for performance on the mathematics 
tasks is provided in Table 1. There was a range of perfor-
mance on each task and thus the items selected for each age 
group were appropriate.

Mean performance on the congruent and incongru-
ent trials of the two inhibition tasks is provided in Fig. 2. 

Table 1  Descriptive statistics for performance on the experimental mathematics tasks

Factual score is the proportion of number facts correctly produced within 3 s. Procedural score is the median RT in seconds for solving arithme-
tic problems. Conceptual understanding is the proportion of correct responses to problem pairs

Task Age 11–12 years Age 13–14 years Adults

Mean (SD) Range Mean (SD) Range Mean (SD) Range

Factual 0.65 (0.27) 0.1–1.0 0.67 (0.26) 0.2–1.0 0.83 (0.16) 0.3–1.0

Procedural 9.4 (3.6) 3.5–18.3 8.8 (3.4) 3.6–17.9 6.8 (2.5) 2.5–14.8

Conceptual 0.76 (0.17) 0.4–1.0 0.81 (0.15) 0.4–1.0 0.92 (0.07) 0.73–1.0
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These data were explored via two mixed-design ANOVAs 
with congruency (congruent, incongruent) as repeated-
measures factor and age group (11–12, 13–14 years, adult) 
as between-groups factor. Dependent variables were RTs 
for the non-numerical inhibition task and accuracy for the 
numerical inhibition task.

For the non-numerical inhibition task there was a signifi-
cant main effect of age group (F(2,205) = 35.1, p < .001, 
ηp

2 = 0.26) with RTs faster for adults than for children 
aged 13–14 years (p < .001) and faster for children aged 
13–14 years than 11–12 years (p = .001). There was also 
a significant main effect of congruency (F(1,205) = 805.9, 
p < .001, ηp

2 = .80) with RTs faster for congruent than for 
incongruent trials. There was no interaction between age 
group and congruency (F(2,205) = 1.2, p = .302; see 
Fig. 2).

For the numerical inhibition task there was a signifi-
cant main effect of age group (F(2,206) = 21.7, p < .001, 
ηp

2 = .17) with accuracy higher for adults than children 
aged 13–14 years (p = .003) and higher for children aged 
13–14 years than 11–12 years (p = .006). There was also 
a significant main effect of congruency (F(1,206) = 204.4, 

p < .001, ηp
2 = .50) with accuracy higher for congruent than 

for incongruent trials. There was also a significant interac-
tion between age group and congruency (F(2,206) = 4.8, 
p = .009, ηp

2 = .05; see Fig. 2). Bonferroni-corrected post 
hoc tests revealed significant congruency effects for all 
three age groups (all ps < .001). Thus, the task was appro-
priate to assess inhibitory control in each age group.

3.2  The relationship between mathematics achievement 
and numerical vs. non-numerical inhibition

The first step in the analysis was to explore the relationship 
between performance on the two inhibition tasks with over-
all mathematics achievement. Numerical inhibition score 
was moderately correlated with mathematics achievement 
(r = −.271, p < .001). Non-numerical inhibition score 
showed a small significant correlation with mathematics 
achievement (r = −.177, p = .016). Thus, participants with 
a smaller difference in accuracy on congruent and incon-
gruent dot comparison trials, or who had a smaller differ-
ence in RT on congruent and incongruent animal stroop 
trials tended to have higher levels of mathematics achieve-
ment. Inhibition scores from the two tasks were also sig-
nificantly correlated (r = .345, p < .001).

We then explored whether numerical and non-numerical 
inhibition had independent relationships with mathematics 
achievement. We conducted two linear regression models 
with mathematics achievement as dependent variable and 
each type of inhibition score as independent variables. In 
the first model, non-numerical inhibition score was added 
in the first step, and numerical inhibition score was added 
in the second step. In the second model these steps were 
reversed. As shown in Table 2, these models produced dif-
ferent patterns of results. Numerical inhibition score was a 
significant predictor, over and above non-numerical inhibi-
tion score, whereas non-numerical inhibition score added 
nothing to the model after numerical inhibition score. Thus, 

Fig. 2  Congruency effects on 
the non-numerical and numeri-
cal inhibition tasks

Table 2  Hierarchical regression models exploring the relationship 
between mathematics achievement and numerical vs. non-numerical 
inhibition scores

Dependent variable = WIAT mathematics composite standard score; 
significance of β weights: * p < .05, ** p < .01, *** p < .001. Model 
R2 = 0.08

Model Step Variable β ∆R2 Sig. ∆R2

1 1 Non-numerical inhibition −0.177* 0.031 0.016

2 Non-numerical inhibition
Numerical inhibition

−0.097
−0.234**

0.049 0.002

2 1 Numerical inhibition −0.268*** 0.072 <.001

2 Numerical inhibition
Non-numerical inhibition

−0.234**
−0.097

0.008 0.204



Cognitive inhibition in different components of arithmetic

1 3

these inhibition tasks are not equivalent and numerical inhi-
bition has an independent relationship with mathematics 
over and above general inhibition. In the remainder of the 
analyses, therefore, numerical inhibition scores alone will 
be used to explore the relationship between inhibition and 
multiple components of arithmetic.

3.3  The relationship between inhibition and multiple 
components of arithmetic

We next explored whether inhibition skill had a differ-
ing relationship with measures of factual, procedural and 
conceptual knowledge of arithmetic. Zero-order correla-
tions revealed small, but significant, correlations between 
numerical inhibition skill and each measure of arithmetic 
(factual knowledge, r = −.193, p = .005; procedural skill, 
r = −.267, p < .001; conceptual understanding, r = −.188, 
p = .006).

To discover whether these correlations represented inde-
pendent relationships, we conducted a linear regression 
with inhibition score as the dependent variable and factual, 
procedural and conceptual arithmetic scores as the inde-
pendent variables. This allowed us to test the relationship 
between inhibition and each component of mathematics 
simultaneously. This revealed that factual knowledge was 
not a significant predictor (0 = 0.045, p = .654), procedural 
skill was a significant predictor (β = −0.260, p = .007) 
and conceptual understanding was a marginally signifi-
cant predictor (β = −0.134, p = .066) (model R2 = 0.085). 
Therefore, inhibition appears to be most strongly related to 
procedural skills and, to a lesser extent, related to concep-
tual understanding.

Finally, we explored whether the relationship between 
inhibition skill and each component of arithmetic was 
similar in participants who were in secondary school, and 
therefore still learning mathematics, compared with adults. 
We repeated the above linear regression separately for the 
adolescents and adults and examined the β weights for the 
different components of arithmetic. As shown in Table 3, 
there appears to be transition over development. At age 
11–14 years, only procedural skill was significantly related 
to inhibition skill, whereas for the group of young adults 
only conceptual understanding was significantly related to 
inhibition skill.

4  Discussion

In this study, we investigated for the first time the rela-
tionship between inhibition and multiple components 
of mathematics. In line with an increasing body of pre-
vious evidence (e.g. Brock et al. 2009; Bull and Scerif 
2001; Kroesbergen et al. 2009) we found that there was a 

significant relationship between inhibition skill and math-
ematics performance. However, our use of both numeri-
cal and non-numerical inhibition tasks as well as tests of 
multiple components of arithmetic allowed a more nuanced 
picture to emerge. First, we found evidence for a stronger 
relationship between mathematics and performance on a 
numerical, compared to a non-numerical, inhibition task. 
Secondly, we found that inhibition skills were an independ-
ent predictor of procedural skills in the group of secondary 
school children and conceptual understanding in the adult 
group. There was no significant independent relationship 
with factual knowledge in either group. Below we consider 
the novel contributions of this study and their theoretical 
implications.

We introduced a novel technique to assess inhibition 
skills in a numerical context—the dot comparison task. 
Previously, overall performance on this task has been used 
to explore the nature of numerical magnitude representa-
tions. However, recent findings have demonstrated that 
incongruent trials, but not congruent trials carry a heavy 
inhibition load (Fuhs and McNeil 2013; Gilmore et al. 
2013; Nys and Content 2012; Szucs et al. 2013). As a 
result, difference in performance on congruent and incon-
gruent trials provides a measure of inhibition skill. We have 
shown here that this measure of inhibition is related to both 
performance on a standard inhibition task, and to overall 
mathematics achievement. Importantly, this measure of 
inhibition predicted mathematics performance even after 
accounting for performance on a non-numerical measure 
of inhibition. This suggests that there is something specific 
about the ability to ignore irrelevant numerical information 
that is particularly important for mathematics performance. 
Our findings go beyond previous evidence for a domain-
specific effect (Bull and Scerif 2001; Navarro et al. 2011; 
Szucs et al. 2013; Wang et al. 2012) and show that this is 
not unique to tasks involving Arabic digit stimuli.

Why might there be a distinction between numerical and 
non-numerical inhibition skills? There is some evidence that 

Table 3  The relationship between inhibition skill and multiple com-
ponents of arithmetic in children and adults

The table reports beta weights (and significance levels) for each inde-
pendent variable in linear regressions with inhibition skill as depend-
ent variable conducted separately for each group

R2 = 0.11 (11- to 14-year-olds) R2 = 0.10 (adults); * p < .05, 
** p < .01

Independent variable Age 11–14 Young adults

Factual knowledge β = 0.043, p = .740 β = 0.069, p = .665

Procedural skill β = −0.346, 
p = .006**

β = −0.117, p = .442

Conceptual under-
standing

β = −0.049, p = .588 β = −0.293, p = .019*
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domain-specific effects are similarly found for the relation-
ship between working memory and mathematics (DeSte-
fano and LeFevre 2004; David 2012). Bull and Scerif (2001) 
suggest that evidence of domain-specific inhibition effects 
could be related to differences in storage capacity across 
varying types of information (see also Szucs et al. 2013). 
Further research is needed that incorporates both measures 
of inhibition skill and working memory to better understand 
the nature of these domain-specific effects.

To our knowledge, this study was the first to system-
atically investigate the relationship between inhibition and 
separate measures of factual, procedural and conceptual 
knowledge of mathematics. Evidence for both a differen-
tial relationship between inhibition and various compo-
nents, and the changing nature of these relationships over 
development helps to pinpoint the types of mechanisms by 
which inhibition may act. In line with previous research 
(e.g. Lemaire and Lecacheur, 2011), we found a relation-
ship between inhibition skill and procedural efficiency in 
school-aged children. Children who had better inhibition 
performance were able to execute accurate solutions more 
quickly. This may have reflected a role for inhibition either 
via more efficient execution of strategies or via the selec-
tion of more advanced strategies (Lemaire and Lecacheur, 
2011). We did not find a relationship between procedural 
efficiency and inhibition in adults, which might suggest 
that the more likely explanation is that inhibition supports 
the selection of more efficient strategies, given that adults 
show less variation in strategy selection compared with 
children. In keeping with this, Khng and Lee (2009) found 
that inhibition skill, measured with a battery of tasks, was 
related to the selection of sophisticated solution strategies, 
in preference to well-learned prepotent arithmetic strategies 
when solving algebraic word problems.

In contrast to previous research (Robinson and Dubé 
2013), we found no relationship between inhibition skills 
and conceptual understanding in children, but did find a rela-
tionship for adult participants. Robinson and Dubé’s study 
explored the application of conceptually based strategies 
when actively solving problems, whereas our conceptual 
task measured the ability to identify conceptual relation-
ships themselves. The problems included in our conceptual 
task were designed to be at the upper limit of what partici-
pants could solve procedurally and therefore provide a purer 
measure of conceptual understanding. The mean scores for 
each group of participants on this task (Table 1) suggest that 
we were less successful in making the problems difficult to 
solve procedurally for the adults compared to the younger 
participants. Thus, it is possible that inhibition may be 
important in cases where a procedural alternative is possible 
(e.g. Robinson and Dubé’s study or the adults in our study) 
and less important when drawing on conceptual knowledge 
per se (e.g. the children in our study). Further research with 

a range of conceptual measures is needed to further explore 
this pattern. In particular, it would be valuable to explore 
these relationships in a variety of mathematical domains, to 
establish the stability of the relationships identified here. If 
confirmed, our findings imply that it may be beneficial for 
children to be given the opportunity to develop conceptual 
knowledge in tasks where alternative procedural approaches 
are not possible as this lessens the inhibitory control load.

It is somewhat surprising that no evidence was found for 
a relationship between inhibition and factual knowledge. 
Previous research has suggested that inhibition is important 
for suppressing related but incorrect solutions when retriev-
ing number facts (Campbell et al. 2011). There are several 
possible explanations of why we failed to find a relation-
ship between inhibition and factual knowledge. First, previ-
ous explorations of interference effects in fact retrieval have 
employed experimental, rather than correlational, designs. 
It is possible that correlational approaches are not sensi-
tive enough to detect this effect. Alternatively, this might 
be related to the domain-specificity effect discussed earlier 
and fact retrieval may only be related to inhibition involving 
digits. Inhibition measured on number–size (e.g. Szucs et al. 
2013) or number–quantity (e.g. Bull and Scerif 2001) stroop 
tasks, which involve Arabic digits, may therefore show a 
different pattern. Finally, this may reflect different types of 
inhibition. Our inhibition tasks were measures of interfer-
ence control, however, fact retrieval is a rapid process and 
it is plausible that links between factual knowledge and 
inhibition are only revealed when response inhibition tasks 
(e.g. Stop-signal tasks) are employed. In this study, we have 
begun to unpick the nuances of the relationship between 
inhibition and different components of mathematics, but 
further research involving a variety of inhibition tasks is 
required to explore these potential explanations.

We have shown here that performance on an inhibition 
task is related to performance on concurrent measures of 
mathematics performance. The correlational design used 
in this study cannot identify whether the mechanisms by 
which inhibition relates to mathematics operate over a 
short or long timeframe. Inhibition skills may be related 
to mathematics performance because inhibition is involved 
in the online performance of mathematics procedures or 
alternatively inhibition may be involved in the learning of 
new mathematics material. In fact as the examples above 
suggest, we believe that inhibition is likely to be involved 
in both the learning of new material (e.g. identifying con-
ceptual regularities) and the online performance of math-
ematics procedures (e.g. inhibiting a left-to-right solution 
strategy in favour of a more efficient approach when solv-
ing arithmetic problems). In order to tease apart these dif-
ferences, research needs to move beyond the correlational 
designs that predominate in this literature and employ 
experimental and longitudinal studies.
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To conclude, we found that inhibition skills are related 
to mathematics performance but the pattern of relation-
ships changes across forms of inhibition, components 
of mathematics and age. This demonstrates that, rather 
than representing a global effect, the role of inhibition 
in mathematics results from a range of specific mecha-
nisms. Future studies should employ specific, as opposed 
to general, measures of both inhibition and mathematics 
in order to advance our understanding of these complex 
relationships. Inhibition is one of many general cogni-
tive skills that have an impact on children’s mathematics 
achievement. Progress in understanding the way in which 
these cognitive skills support or interfere with children’s 
learning will help to reveal why many children struggle 
with mathematics and provide avenues to explore future 
approaches to intervention.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s) 
and the source are credited.
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