2,336 research outputs found

    Effects of red meat taxes and warning labels on food groups selected in a randomized controlled trial

    Get PDF
    BACKGROUND: High consumption of red and processed meat contributes to both health and environmental harms. Warning labels and taxes for red meat reduce selection of red meat overall, but little is known about how these potential policies affect purchases of subcategories of red meat (e.g., processed versus unprocessed) or of non-red-meat foods (e.g., cheese, pulses) relevant to health and environmental outcomes. This study examined consumer responses to warning labels and taxes for red meat in a randomized controlled trial.METHODS: In October 2021, we recruited 3,518 US adults to complete a shopping task in a naturalistic online grocery store. Participants were randomly assigned to one of four arms: control (no warning labels or tax), warning labels only (health and environmental warning labels appeared next to products containing red meat), tax only (prices of products containing red meat were increased 30%) or combined warning labels + tax. Participants selected items to hypothetically purchase, which we categorized into food groups based on the presence of animal- and plant-source ingredients (e.g., beef, eggs, pulses), meat processing level (e.g., processed pork versus unprocessed pork), and meat species (e.g., beef versus pork). We assessed the effects of the warning labels and tax on selections from each food group.RESULTS: Compared to control, all three interventions led participants to select fewer items with processed meat (driven by reductions in processed pork) and (for the tax and warning labels + tax interventions only) fewer items with unprocessed meat (driven by reductions in unprocessed beef). All three interventions also led participants to select more items containing cheese, while only the combined warning labels + tax intervention led participants to select more items containing processed poultry. Except for an increase in selection of pulses in the tax arm, the interventions did not affect selections of fish or seafood (processed or unprocessed), eggs, or plant-based items (pulses, nuts &amp; seeds, tofu, meat mimics, grains &amp; potatoes, vegetables).CONCLUSIONS: Policies to reduce red meat consumption are also likely to affect consumption of other types of foods that are relevant to both health and environmental outcomes.TRIAL REGISTRATION: NCT04716010 on www.CLINICALTRIALS: gov .</p

    Volume 43, Number 3, September 2023 OLAC Newsletter

    Get PDF
    Digitized September 2023 issue of the OLAC Newsletter

    Assessment of a reconfiguration of the InterSpread Plus US national FMD model as a potential tool to analyze a foot-and-mouth disease outbreak on a single large cattle feedlot in the United States

    Get PDF
    IntroductionAn incursion of foot-and-mouth disease (FMD) into the United States remains a concern of high importance and would have devastating socioeconomic impacts to the livestock and associated industries. This highly transmissible and infectious disease poses continual risk for introduction into the United States (US), due to the legal and illegal global movement of people, animals, and animal products. While stamping out has been shown to effectively control FMD, depopulation of large cattle feedlots (&gt;50,000 head) presents a number of challenges for responders due to the resources required to depopulate and dispose of large numbers of animals in a timely and effective manner.MethodsHowever, evaluating alternative strategies for FMD control on large feedlots requires a detailed within-farm modeling approach, which can account for the unique structure of these operations. To address this, we developed a single feedlot, within-farm spread model using a novel configuration within the InterSpread Plus (ISP) framework. As proof of concept we designed six scenarios: (i) depopulation - the complete depopulation of the feedlot, (ii) burn-through – a managed “burn-through” where the virus is allowed to spread through the feedlot and only movement restriction and biosecurity are implemented, (iii) firebreak-NV – targeted depopulation of infected pens and adjacent pens without vaccination; (iv) firebreak - targeted depopulation of infected pens and adjacent pens with vaccination of remaining pens; (v) harvest-NV - selective harvest of pens where a 100% movement restriction is applied for 28-30 days, then pens are set for selection to be sent to slaughter, while allowing a controlled “burn-through” without vaccination; and (vi) harvest - selective harvest of pens with vaccination.ResultsOverall, the burn-through scenario (ii) had the shortest epidemic duration (31d (30, 33)) median (25th, 75th percentiles), while the firebreak scenario (iv) had the longest (47d (38,55)). Additionally, we found that scenarios implementing depopulation delayed the peak day of infection and reduced the total number of pens infected compared to non-depopulation scenarios.DiscussionThis novel configuration of ISP provides proof of concept for further development of this new tool to enhance response planning for an incursion of FMD in the US and provides the capability to investigate response strategies that are designed to address specific outbreak response objectives

    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, enlarge the parasite's food vacuole and alter drug sensitivities

    Get PDF
    Mutations in the Plasmodium falciparum chloroquine resistance transporter, PfCRT, are the major determinant of chloroquine resistance in this lethal human malaria parasite. Here, we describe P. falciparum lines subjected to selection by amantadine or blasticidin that carry PfCRT mutations (C101F or L272F), causing the development of enlarged food vacuoles. These parasites also have increased sensitivity to chloroquine and some other quinoline antimalarials, but exhibit no or minimal change in sensitivity to artemisinins, when compared with parental strains. A transgenic parasite line expressing the L272F variant of PfCRT confirmed this increased chloroquine sensitivity and enlarged food vacuole phenotype. Furthermore, the introduction of the C101F or L272F mutation into a chloroquine-resistant variant of PfCRT reduced the ability of this protein to transport chloroquine by approximately 93 and 82%, respectively, when expressed in Xenopus oocytes. These data provide, at least in part, a mechanistic explanation for the increased sensitivity of the mutant parasite lines to chloroquine. Taken together, these findings provide new insights into PfCRT function and PfCRT-mediated drug resistance, as well as the food vacuole, which is an important target of many antimalarial drugs

    Physical education contributes to total physical activity levels and predominantly in higher intensity physical activity categories

    Get PDF
    Children’s engagement in physical activity of a vigorous intensity or higher is more effective at promoting cardiorespiratory fitness than moderate physical activity. It remains unclear how higher intensity physical activity varies between days when schoolchildren participate in physical education (PE) and non-PE days. The purpose of this study was to assess how PE contributes to sedentary behaviour and the intensity profile of physical activity accumulated on PE days compared to non-PE days. Fifty-three schoolchildren (36 girls, 11.7 ± 0.3 years) completed five-day minute-by-minute habitual physical activity monitoring using triaxial accelerometers to determine time spent sedentary (<1.5 Metabolic Equivalent of Tasks (METs)) and in light (1.5–2.9 METs), moderate (3–5.9 METs), vigorous (6–8.9 METs), hard (9–11.9 METs) and very hard intensity (≥12 METs) physical activity on PE days and non-PE days. Sedentary time was higher on non-PE days than on PE days (mean difference: 62 minutes, p < 0.001). Hard and very hard intensity physical activity was significantly higher on PE days compared with non-PE days (mean total difference: 33 minutes, all significant at p < 0.001). During the PE lesson, boys spent more time in hard (p < 0.01) and very hard (p < 0.01) physical activity compared to girls. Schoolchildren spent significantly more time in higher intensity physical activity and significantly less time sedentary on PE days than on non-PE days. As well as reducing sedentary behaviour, the opportunity to promote such health-promoting higher intensity physical activity in the school setting warrants further investigation

    Clinical, radiologic, pathologic, and molecular characteristics of long-term survivors of diffuse intrinsic pontine glioma (DIPG): a collaborative report from the International and European Society for Pediatric Oncology DIPG registries

    Get PDF
    Purpose Diffuse intrinsic pontine glioma (DIPG) is a brainstem malignancy with a median survival of &lt; 1 year. The International and European Society for Pediatric Oncology DIPG Registries collaborated to compare clinical, radiologic, and histomolecular characteristics between short-term survivors (STSs) and long-term survivors (LTSs). Materials and Methods Data abstracted from registry databases included patients from North America, Australia, Germany, Austria, Switzerland, the Netherlands, Italy, France, the United Kingdom, and Croatia. Results Among 1,130 pediatric and young adults with radiographically confirmed DIPG, 122 (11%) were excluded. Of the 1,008 remaining patients, 101 (10%) were LTSs (survival ≥ 2 years). Median survival time was 11 months (interquartile range, 7.5 to 16 months), and 1-, 2-, 3-, 4-, and 5-year survival rates were 42.3% (95% CI, 38.1% to 44.1%), 9.6% (95% CI, 7.8% to 11.3%), 4.3% (95% CI, 3.2% to 5.8%), 3.2% (95% CI, 2.4% to 4.6%), and 2.2% (95% CI, 1.4% to 3.4%), respectively. LTSs, compared with STSs, more commonly presented at age &lt; 3 or &gt; 10 years (11% v 3% and 33% v 23%, respectively; P &lt; .001) and with longer symptom duration ( P &lt; .001). STSs, compared with LTSs, more commonly presented with cranial nerve palsy (83% v 73%, respectively; P = .008), ring enhancement (38% v 23%, respectively; P = .007), necrosis (42% v 26%, respectively; P = .009), and extrapontine extension (92% v 86%, respectively; P = .04). LTSs more commonly received systemic therapy at diagnosis (88% v 75% for STSs; P = .005). Biopsies and autopsies were performed in 299 patients (30%) and 77 patients (10%), respectively; 181 tumors (48%) were molecularly characterized. LTSs were more likely to harbor a HIST1H3B mutation (odds ratio, 1.28; 95% CI, 1.1 to 1.5; P = .002). Conclusion We report clinical, radiologic, and molecular factors that correlate with survival in children and young adults with DIPG, which are important for risk stratification in future clinical trials

    Aptamer-based multiplexed proteomic technology for biomarker discovery

    Get PDF
    Interrogation of the human proteome in a highly multiplexed and efficient manner remains a coveted and challenging goal in biology. We present a new aptamer-based proteomic technology for biomarker discovery capable of simultaneously measuring thousands of proteins from small sample volumes (15 [mu]L of serum or plasma). Our current assay allows us to measure ~800 proteins with very low limits of detection (1 pM average), 7 logs of overall dynamic range, and 5% average coefficient of variation. This technology is enabled by a new generation of aptamers that contain chemically modified nucleotides, which greatly expand the physicochemical diversity of the large randomized nucleic acid libraries from which the aptamers are selected. Proteins in complex matrices such as plasma are measured with a process that transforms a signature of protein concentrations into a corresponding DNA aptamer concentration signature, which is then quantified with a DNA microarray. In essence, our assay takes advantage of the dual nature of aptamers as both folded binding entities with defined shapes and unique sequences recognizable by specific hybridization probes. To demonstrate the utility of our proteomics biomarker discovery technology, we applied it to a clinical study of chronic kidney disease (CKD). We identified two well known CKD biomarkers as well as an additional 58 potential CKD biomarkers. These results demonstrate the potential utility of our technology to discover unique protein signatures characteristic of various disease states. More generally, we describe a versatile and powerful tool that allows large-scale comparison of proteome profiles among discrete populations. This unbiased and highly multiplexed search engine will enable the discovery of novel biomarkers in a manner that is unencumbered by our incomplete knowledge of biology, thereby helping to advance the next generation of evidence-based medicine

    Attenuation of Salt-Induced Cardiac Remodeling and Diastolic Dysfunction by the GPER Agonist G-1 in Female mRen2.Lewis Rats

    Get PDF
    The G protein-coupled estrogen receptor (GPER) is expressed in various tissues including the heart. Since the mRen2.Lewis strain exhibits salt-dependent hypertension and early diastolic dysfunction, we assessed the effects of the GPER agonist (G-1, 40 nmol/kg/hr for 14 days) or vehicle (VEH, DMSO/EtOH) on cardiac function and structure.Intact female mRen2.Lewis rats were fed a normal salt (0.5% sodium; NS) diet or a high salt (4% sodium; HS) diet for 10 weeks beginning at 5 weeks of age.Prolonged intake of HS in mRen2.Lewis females resulted in significantly increased blood pressure, mildly reduced systolic function, and left ventricular (LV) diastolic compliance (as signified by a reduced E deceleration time and E deceleration slope), increased relative wall thickness, myocyte size, and mid-myocardial interstitial and perivascular fibrosis. G-1 administration attenuated wall thickness and myocyte hypertrophy, with nominal effects on blood pressure, LV systolic function, LV compliance and cardiac fibrosis in the HS group. G-1 treatment significantly increased LV lusitropy [early mitral annular descent (e')] independent of prevailing salt, and improved the e'/a' ratio in HS versus NS rats (P<0.05) as determined by tissue Doppler.Activation of GPER improved myocardial relaxation in the hypertensive female mRen2.Lewis rat and reduced cardiac myocyte hypertrophy and wall thickness in those rats fed a high salt diet. Moreover, these advantageous effects of the GPER agonist on ventricular lusitropy and remodeling do not appear to be associated with overt changes in blood pressure

    Mutant p53 drives clonal hematopoiesis through modulating epigenetic pathway

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) increases with age and is associated with increased risks of hematological malignancies. While TP53 mutations have been identified in CHIP, the molecular mechanisms by which mutant p53 promotes hematopoietic stem and progenitor cell (HSPC) expansion are largely unknown. Here we discover that mutant p53 confers a competitive advantage to HSPCs following transplantation and promotes HSPC expansion after radiation-induced stress. Mechanistically, mutant p53 interacts with EZH2 and enhances its association with the chromatin, thereby increasing the levels of H3K27me3 in genes regulating HSPC self-renewal and differentiation. Furthermore, genetic and pharmacological inhibition of EZH2 decreases the repopulating potential of p53 mutant HSPCs. Thus, we uncover an epigenetic mechanism by which mutant p53 drives clonal hematopoiesis. Our work will likely establish epigenetic regulator EZH2 as a novel therapeutic target for preventing CHIP progression and treating hematological malignancies with TP53 mutations
    corecore