533 research outputs found

    The experience of young people receiving cognitive behavioural therapy for major depression : A qualitative study

    Get PDF
    Aim Major depressive disorder (MDD) has far reaching impacts for young people, their families and society. Cognitive behavioural therapy (CBT) is one of the first-line treatments for young people experiencing MDD; however, there is limited research examining how young people with MDD experience CBT. The aim of this study was to explore their experience and their views of this intervention. Methods We employed a qualitative research design, with semi-structured interviews and thematic analysis. Eight participants aged between 17 and 24 years who received CBT for MDD in a randomized controlled trial were recruited. Results Five themes were identified: the importance of relationship with clinician; the range of useful components within CBT; the ability for CBT to accommodate different techniques and presenting issues; the importance of checking in with clients during the process of therapy; and the impacts of MDD on therapy. Conclusions The findings highlight the importance of clinicians having a youth friendly and collaborative approach that allows a modular delivery of a range of CBT techniques to suit the client's presenting issue and formulation. There is a need to continually check how young people are responding to interventions, and to be aware of potential cognitive deficits and adjust therapy accordingly. This is a small study that provides insight into how young people with MDD experience CBT and avenues to explore for tailoring provision of CBT to enhance the therapeutic experience for this population

    The haunted delimitation of subjectivity in the Work of Nicolas Abraham

    Get PDF
    Kinesin-like calmodulin binding protein (KCBP), a Kinesin-14 family motor protein, is involved in the structural organization of microtubules during mitosis and trichome morphogenesis in plants. The molecular mechanism of microtubule bundling by KCBP remains unknown. KCBP binding to microtubules is regulated by Ca(2+)-binding proteins that recognize its C-terminal regulatory domain. In this work, we have discovered a new function of the regulatory domain. We present a crystal structure of an Arabidopsis KCBP fragment showing that the C-terminal regulatory domain forms a dimerization interface for KCBP. This dimerization site is distinct from the dimerization interface within the N-terminal domain. Side chains of hydrophobic residues of the calmodulin binding helix of the regulatory domain form the C-terminal dimerization interface. Biochemical experiments show that another segment of the regulatory domain located beyond the dimerization interface, its negatively charged coil, is unexpectedly and absolutely required to stabilize the dimers. The strong microtubule bundling properties of KCBP are unaffected by deletion of the C-terminal regulatory domain. The slow minus-end directed motility of KCBP is also unchanged in vitro. Although the C-terminal domain is not essential for microtubule bundling, we suggest that KCBP may use its two independent dimerization interfaces to support different types of bundled microtubule structures in cells. Two distinct dimerization sites may provide a mechanism for microtubule rearrangement in response to Ca(2+) signaling since Ca(2+)- binding proteins can disengage KCBP dimers dependent on its C-terminal dimerization interface

    Lower Extremity Salvage in the Setting of Bullous Pemphigoid Exacerbation: A Case Report

    Get PDF
    Bullous pemphigoid is an autoimmune blistering disease where patients suffer from painful bullae, often covering large portions of the skin and requiring management with immune-suppression. Our case report of recurring bullous pemphigoid illustrates the importance of considering immunosuppressive perioperative management in patients with a history of autoimmune blistering even when the disease has been quiescent for some time. With multidisciplinary care and immune suppressive therapies in the perioperative period, a free flap complicated by recurrent bullous pemphigoid can be salvaged

    Miro: A Driver of the Kinesin Motor

    Get PDF

    Overexpression of Strigolactone-Associated Genes Exerts Fine-Tuning Selection on Soybean Rhizosphere Bacterial and Fungal Microbiome

    Get PDF
    Strigolactones are a recently discovered class of carotenoid-derived plant hormones with a wide variety of functions, including acting as signaling molecules in the rhizosphere to promote arbuscular mycorrhizal fungi colonization and parasitic seed germination. To determine whether strigolactones influence the recruitment of microbes to the rhizosphere, we characterized both bacterial and fungal communities in response to the overexpression of genes involved in strigolactone biosynthesis (MAX1d) and signaling perception (D14 and MAX2a) in soybean (Glycine max). The amplicon sequencing-based results suggest that strigolactone overexpression lines had altered soybean rhizosphere bacteria composition at both the community level and individual taxa level with genera including Shinella and Bdellovibrio consistently more abundant across all three overexpression constructs. In addition, the responses of the soybean rhizosphere bacteria community differed significantly across the genes, with lines overexpressing genes involved in strigolactone biosynthesis (MAX1d) yielding a divergent bacterial community in comparison with those with altered expression of strigolactone perception genes (D14 and MAX2a). The overexpressed genes did not significantly impact the overall fungal community distribution; however, some individual taxa were altered in abundance. MAX1d and D14 overexpression lines had significantly enriched abundance of Fusarium solani. The mediating role of strigolactone biosynthesis and signaling genes on soybean rhizosphere bacterial and fungal communities confirmed strigolactone’s importance in the rhizosphere host–microbe communication and microbial community structure

    Silicon and Nickel Enrichment in Planet-Host Stars: Observations and Implications for the Core-Accretion Theory of Planet Formation

    Full text link
    We present evidence that stars with planets exhibit statistically significant silicon and nickel enrichment over the general metal-rich population. We also present simulations which predict silicon enhancement of planet hosts within the context of the core-accretion hypothesis for giant planet formation. Because silicon and oxygen are both alpha elements, [Si/Fe] traces [O/Fe], so the silicon enhancement in planet hosts predicts that these stars are oxygen-rich as well. We present new numerical simulations of planet formation by core accretion that establish the timescale on which a Jovian planet reaches rapid gas accretion, t_rga, as a function of solid surface density sigma_solid: (t_rga / 1 Myr) = (sigma_solid / 25.0 g cm^{-2})^{-1.44}. This relation enables us to construct Monte Carlo simulations that predict the fraction of star-disk systems that form planets as a function of [Fe/H], [Si/Fe], disk mass, outer disk radius and disk lifetime. Our simulations reproduce both the known planet-metallicity correlation and the planet-silicon correlation reported in this paper. The simulations predict that 16% of Solar-type stars form Jupiter-mass planets, in agreement with 12% predicted from extrapolation of the observed planet frequency-semimajor axis distribution. Although a simple interpretation of core accretion predicts that the planet-silicon correlation should be much stronger than the planet-nickel correlation, we observe the same degree of silicon and nickel enhancement in planet hosts. If this result persists once more planets have been discovered, it might indicate a complexity in the chemistry of planet formation beyond the simple accumulation of solids in the core accretion theory.Comment: 45 pages, including 12 figures, accepted for publication in the Astrophysical Journa

    Risk of bias reporting in the recent animal focal cerebral ischaemia literature

    Get PDF
    BACKGROUND: Findings from in vivo research may be less reliable where studies do not report measures to reduce risks of bias. The experimental stroke community has been at the forefront of implementing changes to improve reporting, but it is not known whether these efforts are associated with continuous improvements. Our aims here were firstly to validate an automated tool to assess risks of bias in published works, and secondly to assess the reporting of measures taken to reduce the risk of bias within recent literature for two experimental models of stroke. METHODS: We developed and used text analytic approaches to automatically ascertain reporting of measures to reduce risk of bias from full-text articles describing animal experiments inducing middle cerebral artery occlusion (MCAO) or modelling lacunar stroke. RESULTS: Compared with previous assessments, there were improvements in the reporting of measures taken to reduce risks of bias in the MCAO literature but not in the lacunar stroke literature. Accuracy of automated annotation of risk of bias in the MCAO literature was 86% (randomization), 94% (blinding) and 100% (sample size calculation); and in the lacunar stroke literature accuracy was 67% (randomization), 91% (blinding) and 96% (sample size calculation). DISCUSSION: There remains substantial opportunity for improvement in the reporting of animal research modelling stroke, particularly in the lacunar stroke literature. Further, automated tools perform sufficiently well to identify whether studies report blinded assessment of outcome, but improvements are required in the tools to ascertain whether randomization and a sample size calculation were reported
    corecore