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ABSTRACT

Strigolactones are a recently discovered class of carotenoid-derived
plant hormones with a wide variety of functions, including acting as
signaling molecules in the rhizosphere to promote arbuscular
mycorrhizal fungi colonization and parasitic seed germination. To
determinewhether strigolactones influence the recruitment ofmicrobes
to the rhizosphere, we characterized both bacterial and fungal
communities in response to the overexpression of genes involved in
strigolactone biosynthesis (MAX1d) and signaling perception (D14 and
MAX2a) in soybean (Glycine max). The amplicon sequencing-based
results suggest that strigolactone overexpression lines had altered
soybean rhizosphere bacteria composition at both the community level
and individual taxa level with genera includingShinella andBdellovibrio
consistentlymore abundant across all three overexpression constructs.
In addition, the responses of the soybean rhizosphere bacteria
community differed significantly across the genes, with lines

overexpressing genes involved in strigolactone biosynthesis (MAX1d)
yielding a divergent bacterial community in comparison with those with
altered expression of strigolactone perception genes (D14 and
MAX2a). The overexpressed genes did not significantly impact the
overall fungal community distribution; however, some individual taxa
were altered in abundance.MAX1d andD14 overexpression lines had
significantly enriched abundance of Fusarium solani. The mediating
role of strigolactone biosynthesis and signaling genes on soybean
rhizosphere bacterial and fungal communities confirmed strigolactone’s
importance in the rhizosphere host–microbe communication and
microbial community structure.

Keywords: bacteria, crop, fungi, metagenomics, microbiome,
rhizosphere and phyllosphere, soybean, strigolactone,
transformation

Plants have evolved intimate interactions with their associated
microbiomes for various functions, including nutrient uptake, stress
tolerance, pathogen defense, and phenotypic plasticity, all facili-
tated by diverse plant-growth-promoting microbes (Bakker et al.
2018; Goh et al. 2013). Comprehensive and mechanistic under-
standing of plant microbiome assembly is crucial for optimizing
beneficial plant–microbe interactions and maximizing the benefits
offered by the plant microbiome for agricultural applications
(Pieterse et al. 2016). The rhizosphere (the narrow region between
the plant root and attached soil) is a dynamic and active interface
characterized by intensive communication between the plant and
microbes (Philippot et al. 2013). In this zone, plants actively and
dynamically modulate the composition and function of microbes
via root exudates, secondary metabolites, or specific signaling
molecules in response to changing soil biotic or abiotic stimuli
(Berendsen et al. 2018; Castrillo et al. 2017; Lebeis et al. 2015;
Stringlis et al. 2018; Xu et al. 2018; Zhalnina et al. 2018).
Strigolactones are a group of carotenoid-derived plant hormones

and signaling molecules involved in plant–microbe interac-
tions (Al-Babili and Bouwmeester 2015; Cook et al. 1966). The
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biosynthesis of strigolactones starts with the activity of a b-carotene
isomerase DWARF27 (D27) and two carotenoid cleavage
dioxygenases (CCD7 and CCD8) to produce carlactone (Waters
et al. 2017). Carlactones are then catalyzed by a cytochrome
P450 enzyme called more axillary growth 1 (MAX1) and subse-
quent uncharacterized enzymes to produce either canonical or

noncanonical strigolactones (López-Ráez et al. 2017; Waters et al.
2017). Expression of genes involved in strigolactone biosynthesis is
highest in plant roots (e.g., rice, Arabidopsis, sorghum, and pea) and
low or undetectable in other tissues (Al-Babili and Bouwmeester
2015; Ruyter-Spira et al. 2013; Yoneyama et al. 2007). The syn-
thesized strigolactones function as plant hormones via downstream

TABLE 1
Genes participating in strigolactone biosynthesis and perception in Arabidopsis and Williams 82

Role,
Arabidopsis loci

Arabidopsis
gene name

Protein identity,
function

Soybean locus,
version

Wm82.a2.v1
Quantitative reverse-transcription

(qRT)-PCR forward primer qRT-PCR reverse primer

Strigolactone
biosynthesis

At1g03055 D27 9-Cis/all transb-
carotene
isomerase
(9-Cis)

Glyma.02g143300 AGTAATTGGCCACGTTGTGC GGTATCGGGTGTGTTACATGC

At1g03055 D27 9-Cis Glyma.10g031100 TGACATCACAGGGTTTCAGG TGCATTGGACCACTTAGCTG

At2g44990 CCD7/
MAX3/
Rms5

Carotenoid
cleavage

dioxygenase
(CCD) 7

Glyma.01g073200 TGATGTATGGGAGGTTGCTG CTTCAGCATTGCAAGACACG

At2g44990 CCD7/
MAX3/
Rms5

CCD 7 Glyma.U016700
(MAX3b)a

CCTTCACATGCCAACACAAC TGAATGGGTTTGGCTTGC

At4g32810 CCD8/
MAX4/
Rms1

CCD 8 Glyma.04g084100
(MAX4a)a

CACTCTAAACGACAAGGGCTTC GAAAGCCATGATCGAAGTGG

At4g32810 CCD8/
MAX4/
Rms1

CCD 8 Glyma.06g085800
(MAX4b)a

TGGACTTCCATATGGGTTGC TGCGTCGTTTCTCTAAGCAG

At2g26170 MAX1 Cytochrome
P450

Glyma.04g052100
(MAX1a)a

TCGTTCTTCGTGCCTTTCAC ACCATGGATTGGTGCTGAAC

At2g26170 MAX1 Cytochrome
P450

Glyma.06g052700
(MAX1b)a

AAGGCTTCAGCCTGAGATTG CGAACACGTGCCTCATTTAC

At2g26170 MAX1 Cytochrome
P450

Glyma.17g227500
(MAX1c)b

TGTTCACCACCCTTCTGATG TAAGGGAAGGTGTCCTACCAG

At2g26170 MAX1 Cytochrome
P450

Glyma.14g096900
(MAX1d)c

TGGTATGGTTCTCAACTTCAAGC TCCATTGCATCACAGTATTACG

Strigolactone
perception or
signaling

At3g03990 D14/D88/
DAD2

a/b-Hydrolases
superfamily

protein
(a/b-H)

Glyma.17g235300 GTTGCTTGCTTGTGTTTCTCC TTCAGTTGTCTGGCCTCATC

At3g03990 D14/D88/
DAD2

a/b-H Glyma.14g089000 AGATTGCGCTTTCCCAGTAG TAGGACCCTGCCTATTCTTCTC

At4g37470 KAI2 a/b-H Glyma.05g102800 GCCTCGACATTGCAACTAGAC CCACACCACACCATCAATC

At4g37470 KAI2 a/b-H Glyma.11g051000 GGTCATTTGCCGCAGTTAAG CCACAAACACACACAGGGATAG

At4g37470 KAI2 a/b-H Glyma.01g191200 TCGTTATTCCGGTGTTGCTC CATCACGTCGATGTCTACCTTC

At4g37470 KAI2 a/b-H Glyma.17g164500 TATTCGTCTGGTCCTTCTCTCC CAATGAGATTGACGCGTAGC

At4g37470 KAI2 a/b-H Glyma.17g164400 AGCGAACAAACCCAACAATC TGTGAGCCTCTTCCACGATAC

At2g26170 MAX2/D3/
Rms4

F-box protein Glyma.12g128600
(MAX2a)a

GGGTGATGGTGGTGAATTG CTTGCCACAGAAACCATTGC

At2g26170 MAX2/D3/
Rms4

F-box protein Glyma.06g277000 TGTATGGACCCATCCAATCC CCAAGGGAATGGGTCTAATG

a Name originally assigned by Haq et al. (2017).
b Name originally assigned by Rehman et al. (2018).
c Name newly assigned.
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signaling transduction networks enabled by ɑ/b-fold hydrolaseD14
and F-box protein Max2 (Arite et al. 2009; Beveridge and Kyozuka
2010; Nelson et al. 2011). Simultaneously, strigolactones are ex-
uded into the rhizosphere; however, transport mechanisms are not
yet well understood, with the only characterized transport gene,
the ABC transporter PDR1, first identified in Petunia hybrida
(Kretzschmar et al. 2012).
In the rhizosphere, strigolactones promote root colonization by

symbiotic arbuscular mycorrhizal fungi (AMF) in many species,
including Lotus japonicus, petunia, sorghum, tomato, and Fabaceae
plants (Akiyama et al. 2005; Besserer et al. 2006; Kretzschmar et al.
2012; Yoneyama et al. 2008). Their presence is also perceived
as germination stimulants for root-parasitic plants of the family
Orobanchaceae (Yoneyama et al. 2008). Strigolactones have re-
cently been suggested to function as important modulators for
legume nodulation. In soybean, mutations of strigolactone bio-
synthesis genes have yielded nodulation phenotypes. Over-
expression ofMAX3b (CCD7) increased nodule number per gram of
healthy root while knockdown of the expression did the opposite
(Haq et al. 2017). Knockdowns of MAX1a (MAX1) and MAX4a
(CCD8) also exhibited decreased nodulation (Rehman et al. 2018).
Both studies found nodule-related gene expression differences and
altered hormone levels in addition to the phenotypic effects (Haq
et al. 2017; Rehman et al. 2018). In both pea and alfalfa, in vitro
application of the synthetic strigolactone analog GR24rac increased
the number of nodules per plant (Foo and Davies 2011; Soto et al.
2010). Furthermore, reduced nodule numbers were detected in the
strigolactone synthesis mutants ccd7 and ccd8 in comparison with
wild-type pea, and this reduction of nodule formation could be
rescued by GR24rac to a similar level as the wild type (Foo and
Davies 2011; Foo et al. 2013). However, promotion of nodulation
by strigolactones does not appear to be due to their stimulatory
effects on rhizobia growth or increased expression of nod genes
(Foo and Davies 2011; Moscatiello et al. 2010; Soto et al. 2010).
One study found that strigolactone application enhanced surface
motility of Sinorhizobium meliloti, a rhizobia of alfalfa (Peláez-
Vico et al. 2016), while another indicated that it promoted infection
thread formation (McAdam et al. 2017), providing a number of
possible mechanisms for strigolactones to help establish rhizobia in
nodules through direct influence of the microbial partner.
The role that strigolactones play as signaling molecules for both

AMF and nodule-associated microbes suggests that they may also
have a broader role in mediating the overall rhizosphere micro-
biome. In Arabidopsis, lack of strigolactone production, induced
through MAX4-deficient mutants, altered the fungal community
composition in the rhizosphere but did not influence the bacterial
community (Carvalhais et al. 2019). In contrast, rice mutants in
strigolactone production (d17) and signaling (d14) demonstrated
strong differences in the rhizosphere bacterial community com-
position but less noticeable impacts on fungi (Nasir et al. 2019). To
date, the role of strigolactones in shaping the rhizosphere micro-
biome has yet to be examined in a legume. We hypothesize that
strigolactone production and signaling in soybean roots directly or
indirectly mediate microbial recruitment to the rhizosphere. To
explore this question, we generated transgenic hairy root plants
overexpressingMAX1d,MAX2a, andD14 genes and used amplicon
sequencing to characterize the resulting differences of both bacterial
and fungal communities in the rhizosphere.

MATERIALS AND METHODS

Candidate gene selection. Genes involved in strigolactone
biosynthesis and perception in Arabidopsis thaliana were obtained
from the TAIR database (Berardini et al. 2015). Corresponding

homologs in Glycine max were retrieved from Phytozome
(Goodstein et al. 2012) (Table 1; Fig. 1) and previous publications
(Haq et al. 2017; Rehman et al. 2018). In total, 19G. max genes were
identified. The name MAX1d was assigned to Glyma.14g096900
based on a recent phylogenetic study (Rehman et al. 2018), in which
four MAX1 homologs were identified in G. max, with three of them
explicitly namedMAX1a,MAX1b, andMAX1c. ThemRNA sequence
of each homolog was downloaded from SoyBase (Grant et al. 2010)
and multiple sequence alignments of gene family members were
created with Clustal Omega (Sievers and Higgins 2018). Gene-
specific primers were designed from sequence regions that are
unique to each gene using the Primer3 (Untergasser et al. 2012)
online tool. To quantify the relative expression level for each gene,
total RNA was extracted from root tissues of Williams 82 plants
with Trizol reagent and subsequently purified using chloroform
extraction. After DNase treatment, the DNA-free RNA was used
for gene quantification assays using one-step quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) (Power SYBR
Green RNA-to-CT 1-Step Kit). The qPCR assays were conducted
using three biological samples, each with three technical replicates on
an ABI 7900HT Fast Real-Time PCR System (Applied Biosystems).
The soybean ubiquitin gene (Glyma.20G141600) was used as a
constitutively expressed reference gene. Quantification of gene ex-
pression levels was performed as previously described (Rambani
et al. 2015).
Construction of overexpression binary vectors and genera-

tion of transgenic hairy roots. The coding sequences of MAX1d
(Glyma.14g096900), D14 (Glyma.17g235300), and MAX2a
(Glyma.12g128600) genes were amplified from Williams 82 root
cDNA using gene-specific primers containing AscI and BamHI
restriction sites (Supplementary Table S1). Specifically, 10.5 µl of
DNA-free RNA (50 ng/µl) and 0.5 µl of poly-dT (50 µM) were used
to synthesize the first-strand cDNA. The RNA and poly-dT mixture
was heated at 70�C for 5 min, then transferred to ice for 4 min,
where 4 µl of first-strand buffer (5×), 2 µl of dNTP mix (10 mM),
2 µl of dithiothreitol (100 mM), and 1 µl of smart Moloney murine
leukemia virus reverse transcription (Clontech) were added to the

Fig. 1. Genes involved in strigolactone biosynthesis (top) and signaling
(bottom). Genes targeted for overexpression constructs (MAX1,MAX2,
and D14) are shown in red.
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mixture and incubated at 42�C for 1 h. Then, the reaction was
terminated by heating at 70�C for 15 min. Finally, 2 µl of the
synthesized cDNA was used as a template to amplify the coding
sequence of the three indicated genes using gene-specific primers
containing the AscI and BamHI restriction sites following TaKaRa
Taq protocol (Supplementary Table S1). The amplified products
were digested, purified, and ligated into pG2RNAi2 binary vector
using AscI and BamHI restriction sites (Supplementary Fig. S1).
pG2RNAi2 harbors a green fluorescent protein (GFP) coding gene
as reporter for subsequent transgenic hairy root identification. The
recombinant binary plasmids were confirmed by Sanger sequencing
and introduced to Agrobacterium rhizogenes strain K599 using the
freeze-thaw method. Transgenic hairy roots were generated in
cultivar Williams 82 according to Kereszt et al. (2007). Transgenic
hairy roots expressing the empty pG2RNAi2 binary vector were
used as a control, and referred to asWIL82_Rhi. The generated hairy
roots were screened using the GFP reporter with the aid of a
fluorescence microscope. During the screening process, all non-
transgenic roots were removed, leaving only transgenic hairy roots.
Transgenic soybean seedling growth and rhizosphere sample

collection. Fresh soil was collected from the East Tennessee
Research and Education Center Plant Science Unit just before

transgenic hairy root screening. After field collection, the soil was
immediately transported to the greenhouse. After removing roots
and debris, the soil was well homogenized and allocated to pots
(diameter of 20 cm and height of 25 cm). Once the transgenic
screening was completed, composite plants with similar numbers
of transgenic hairy roots were transplanted into the pots and grown
in the greenhouse for approximately 1 month until the flowering
stage (16 h of light and 8 h of darkness at 30 and 20�C, re-
spectively, with a relative humidity of 60 to 80%). Pots with soil
but no plants were also maintained in the same conditions, and the
soil from these is hereafter referred to as bulk soil. All treatments
(MAX1d,D14,MAX2a,WIL82, and bulk soil) were started with 10
biological replicates. All soybean plants and nonplant bulk soils
were watered as needed, approximately every other day.
At the flowering stage, soybean rhizosphere soil samples were

collected according to Lundberg et al. (2012). Briefly, pots with
soybean plants were put upside down into a surface-sterilized metal
tray, and soybean roots were gently separated from the soil block.
Loosely attached soil was shaken off the soybean roots, and the roots
with adherent soil were placed into phosphate buffer (per liter: 6.33 g

Fig. 2. Strigolactone candidate gene expression and confirmation of
overexpression in transformed roots. A, Relative expression across 19
homologs involved in the strigolactone biosynthesis and signaling
pathways was assayed with quantitative reverse-transcription (qRT)-
PCR, with ubiquitin as the constitutive reference gene. B, Green
fluorescent protein (GFP) expression in soybean transgenic hairy roots
after transformation with Agrobacterium rhizogenes K599 was visualized
with a fluorescent microscope. The same roots are visualized under
visible light (left) and GFP-specific filter (right).

Fig. 3. Differences between treatments in the bacterial community. A,
Constrained analysis of principal coordinate analysis (CAP) plot for
microbial communities between treatments. B, Shannon diversity box
plot for bacterial community. Statistically different groups are indicated by
capital letters.
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ofNaH2PO4 $H2O, 16.5 g of Na2HPO4 $ 7H2O, and 200ml of Silwet
L-77). The tubes were vortexed at maximum speed for 30 s and the
slurry was filtered through a 100-mm cell strainer. The soil pellet
centrifuged from the slurry was collected as the rhizosphere soil
sample. A similar amount of bulk soil was collected from the pots
with no plant, and processed in parallel with the rhizosphere samples.
All of the extracted soil samples were flash-frozen in liquid nitrogen
and stored at _80�C before DNA extraction.
DNA extraction, library preparation, and sequencing. Soil

DNA was extracted using the PowerSoil DNA isolation kit (Qiagen)
following the manufacturer’s protocol. We performed 16S ribosomal
RNA (rRNA) gene-based bacteria profiling using Illumina Miseq
275-bp paired-end sequencing, targeting the V3-V4 region with
forward primer 341F = 59-CCTACGGGNGGCWGCAG-39 and
reverse primer 785R = 59-GACTACHVGGGTATCTAATCC-39
(Takahashi et al. 2014). The libraries were prepared following the
Illumina 16S metagenomic sequencing protocol. Briefly, for the first-

step PCR, a 16S rRNA gene-specific primer with adapter overhangs
(compatible with Nextera XT index) was used to amplify the 16S
rRNA V3-V4 region with 2× KAPA HiFi HotStart ReadyMix with
the following PCR cycle: 95�C for 3 min; 25 cycles of 95�C for 30 s,
78�C for 10 s, 55�C for 30 s, and 72�C for 30 s; and 72�C for 5 min.
The PCR products were then purified with AMPure XP beads.
During the second step of PCR, Illumina dual indices were ligated to
the PCR product from step one using the Nextera XT Index Kit with
PCR cycle of 95�C for 3min; 8 cycles of 95�C for 30 s, 78�C for 10 s,
55�C for 30 s, and 72�C for 30 s; and 72�C for 5 min. To minimize
the amplification of plant material (chloroplast and mitochondria),
peptide nucleic acid (PNA) blockers were used to block mito-
chondrial and plastid DNA elongation during the first step of PCR
(Lundberg et al. 2013): antimitochondrial PNA (mPNA) 59-
GGCAAGTGTTCTTCGGA-39 and antiplastid PNA (pPNA) 59-
GGCTCAACCCTGGACAG-39. Fungal profiling used the internal
transcribed spacer (ITS)2 region sequenced on an Illumina MiSeq

Fig. 4.Bacteria differential abundance analysis between overexpression constructs andwild-type rhizospheres. The differential abundance analysis was
conducted using LefSe software across all taxonomic levels. All of the listed taxa were either significantly enriched or depleted in the treatments versus
the control: A, MAX1d; B, D14; and C, MAX2a. Linear discriminant analysis (LDA) score estimated the effect size.
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with 250-bp paired-end sequencing using six forward and two re-
verse primers at an equal concentration (Cregger et al. 2018), which
are designed to allow better detection of species of Chytridiomycota,
Sebacinales, Glomeromycota, Sordariales, Stramenopila, and
Archaearhizomycetes. Library preparation also followed the
Illumina 16S metagenomic sequencing library preparation proto-
col. The sequencing data were submitted to the SRA database
under accession number PRJNA591628.
Sequence analysis. Libraries with very low sequencing yield

were removed, leaving seven samples fromMAX1d overexpression
plants (MAX1d_Rhi), seven samples from D14 overexpression
plants (D14_Rhi), seven samples from MAX2a overexpression
plants (MAX2a_Rhi), seven samples from plants transformed with a
marker gene only (WIL82_Rhi), and eight samples from pots with
no plant (bulk soil). Mothur software was used to process 16S
rRNA gene and ITS2 region sequences (Schloss et al. 2009). For
16S rRNA gene sequences, operational taxonomic units (OTUs)
were clustered at 97% similarity using aligned sequences and
classified against the SILVA 132 taxonomy reference database
using a naive Bayesian classifier (Kozich et al. 2013; Wang et al.
2007). Because sequence variation within the 16S rRNA V3-V4
region is not sufficient to distinguish non-A. rhizobium with our
vector carrier (A. rhizogenes k599), any sequences classified as
A. rhizobium were removed from downward OTU clustering and
community analysis. Detailed exploration of this OTU as well as
qPCR-based quantification is available in Supplementary File S1.
For ITS2 sequences, OTUs were clustered at 97% similarity using
unaligned sequences, which were taxonomically classified based on
the UNITE v8 reference (Nilsson et al. 2019). For both 16S and
ITS2, any sequence pairs (forward and reverse reads) with a
mismatch within the primer region were removed before assembly.
Chimera sequences were detected and discarded using the vsearch

tool based on the UCHIME algorithm (Edgar et al. 2011; Rognes
et al. 2016). Sequences that belonged to chloroplast, mitochondria,
eukaryotes, and archaea were discarded before OTU clustering for
16S rRNA data. Similarly, nonfungal sequences, including un-
known, Alveolata, Amoebozoa, Apusozoa, Choanoflagellozoa,
Chromista, Cryptista, Euglenozoa, Eukaryota, Incertae_sedis,
Filasteriae, Glaucocystoplantae, Haptista, Heterolobosa, Ichthyo-
sporia, Metazoa, Picozoa, Planomonada, Protista, Protozoa, Rhi-
zaria, Rhodoplantae, Stramenopila, and Viridiplantae species, were
removed before OTU clustering and classification. To alleviate the
bias introduced by uneven sequencing depth, rarefaction at the
minimum sequencing depth of 26,012 (16S rRNA gene) and 9,169
(ITS2) was used for normalization. OTUs represented by a single
read were removed before subsequent microbial community
analysis in R.
To compare the compositional differences of bacterial and fungal

communities between treatments, b diversity between samples was
calculated based on Bray-Curtis dissimilarity and visualized by
principal coordinates analysis (PCoA) and constrained analysis of
PCoA (CAP) plots. Shannon a diversity metrics were compared
between treatments using a Kruskal-Wallis test, followed by
pairwise comparison using Dunnett’s test at the threshold P value <
0.05. Differential abundance of bacteria and fungi at individual taxa
level was analyzed using LefSe (Segata et al. 2011). Tax4Fun2 was
used to infer the functional capacity of bacterial communities based
on taxonomic information (Wemheuer et al. 2018). The metabolic
pathway profiles generated from Tax4Fun2 were used as input for
DESeq2 to test the treatment effects on individual metabolic
pathways (Love et al. 2014). KEGG pathways with differential
abundance between treatments were extracted for visualization
using pheatmap (Kolde 2015). Similarly, FUNGuild was used
to summarize fungal functions and guilds between treatments

Fig. 5. Relative abundance bar plots for bacterial taxa between treatments. The P value was calculated based either on one-way analysis of variance or
nonparametric Kruskal-Wallis test, depending on the normality of the data. Capital letters at the top of each bar represent the differences between
treatments based on a pairwise comparison based either on Tukey’s honestly significant difference or Dunn’s test.
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(Nguyen et al. 2016). The relative abundance of predicted fungi
guilds was compared between treatments using either one-way
analysis of variance or a Kruskal-Wallis test, depending on the
distribution of corresponding dependent variables.

RESULTS

Generation of transgenic soybean hairy root plants. To select
candidate genes for transformation, we targeted highly expressed
genes from the most downstream steps of the strigolactone bio-
synthesis and perception pathways (Ruyter-Spira et al. 2013; Xie
et al. 2010) (Fig. 1). qRT-PCR results of 19 strigolactone-associated
genes detected expression in root tissue for all 19 homologs (Fig.
2A). The most highly expressed homologs of MAX1, D14, and
MAX2 genes were selected (i.e., Glyma.14g096900, MAX1d;
Glyma.17g235300, D14; and Glyma.12g128600, MAX2a) as tar-
gets for generating overexpression constructs for producing
transgenic soybean hairy roots in the Williams 82 genotype.
Transgenic hairy root plants expressing the empty pG2RNAi2
binary vector with the GFP reporter were used as control. Mi-
croscopic screening results indicated that the overexpression
constructs were successfully transferred and expressed in the se-
lected hairy roots of all individuals (Fig. 2B).
Microbial community composition and structure in the

soybean rhizosphere. In total, 1,810,039 16S rRNA gene and
971,362 ITS2 amplicon sequences were retained after initial
trimming and screening with Mothur software (Schloss et al. 2009).
These sequences were clustered into 42,313 bacterial OTUs and
4,634 fungal OTUs across 36 samples (7MAX1d_Rhi, 7D14_Rhi, 7
MAX2a_Rhi, 7 WIL82_Rhi, and 8 bulk soil). After rarefaction and
removal of singletons, 12,368 bacterial OTUs and 1,607 fungal
OTUs remained, which were classified into 1,048 genera and 750
species, respectively (Supplementary Table S2). Rarefaction plots
indicated consistent sampling of taxa across individual libraries and
sufficient sequencing depth for the fungal community; however,
species richness was likely not fully sampled for the bacterial
community (Supplementary Fig. S2). The soybean rhizosphere was
different in microbial composition from the bulk soil (Supple-
mentary File S1), mirroring previous studies of the rhizosphere
effect in soybean (Liu et al. 2019; Mendes et al. 2014; Zhang et al.
2018).
Rhizosphere bacterial composition and diversity across

treatments. The influence of strigolactone-associated gene over-
expression on soybean rhizosphere bacterial composition was small
but significant. The constrained ordination explained 16.37% of the
total variation between samples (excluding bulk soil), and the CAP
plot showed the clear separation of soybean control (WIL82_Rhi)
and overexpression (MAX1d_Rhi, D14_Rhi, and MAX2a_Rhi)
samples (Capscale, F(3,24) = 1.56, P = 0.007) (Fig. 3A). The
composition of the bacterial community also differs between the
individual overexpression gene treatments (Capscale, F(2,18) = 1.49,
P = 0.028). Rhizosphere bacterial communities from the plants
overexpressing the strigolactone perception genes D14 andMAX2a
were very similar to each other and significantly diverged in tax-
onomic composition from the rhizosphere communities of plants
overexpressing MAX1d, a strigolactone biosynthesis gene (Cap-
scale, F(1,19) = 1.95, P = 0.007). Differences in Shannon a diversity
of the bacterial community were less evident (Fig. 3B). Of the three
genes,MAX2a_Rhiwas the only one significantly different from the
wild-type WIL82_Rhi with higher overall a diversity. MAX2a_Rhi
was also significantly more diverse than MAX1d_Rhi.
By examining each treatment against the soybean control, we

found specific enriched and depleted bacterial taxa: MAX1d had 10
enriched and 1 depleted, D14 had 15 enriched and 6 depleted, and

MAX2a had 36 enriched and 8 depleted (Fig. 4; Supplementary
Table S3). The families Microbacteriaceae, Rhizobiaceae (espe-
cially genus Shinella), and Bdellovibrionaceae (especially genus
Bdellovibrio) were consistently enriched across overexpressing
roots compared with the soybean empty-vector control roots (Fig.
5). A few enriched and depleted taxa were shared by more than one
treatment. For example, Deltaproteobacteria and Dyadobacter
were significantly enriched in D14- and MAX2a-overexpressing
roots compared with control roots while Gammaproteobacteria
(Pseudomonas specifically) was significantly depleted. However,
none of these three changes were detectable for the MAX1d-
overexpressing roots.
Rhizosphere fungal composition and diversity across

treatments. In contrast to bacterial communities, the differences in
fungal community composition between control soybean roots and
overexpressing roots was not significant at a P value cutoff of 0.05
(Capscale, F(3,24) = 1.22, P = 0.098) (Fig. 6), although the con-
strained ordination explained 13.23% of overall variation (ex-
cluding bulk soil). However, the low P value of 0.098 indicates that
more biological replicates or sequencing depth may be needed to
decisively determine whether differences are present. Nor did we
detect any significant differences between MAX1d-, D14-, and

Fig. 6. Differences between treatments in the fungal community. A,
Constrained analysis of principal coordinate analysis (CAP) plot for
microbial communities between treatments. B, Shannon diversity box
dot plot for fungal community. No statistically different groups were
detected.
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MAX2a-overexpressing roots (Capscale, F(2,18) = 1.07, P = 0.306).
In terms of fungal community diversity, the Shannon a diversity
was similar between the bulk soil controls and soybean rhizosphere
as well as between the soybean control roots and overexpression
roots (Kruskal-Wallis x2 = 6.53, P = 0.16) (Fig. 6B).
Despite the lack of significant differences in overall community

composition, individual taxa were significantly enriched or depleted
by the overexpression of strigolactone biosynthesis and perception
genes (Fig. 7; Supplementary Table S3). Specifically, Fusarium
solani was consistently enriched in the soybean rhizosphere with
the overexpression of MAX1d and D14 when compared with the
soybean control (Fig. 8). The Rhizophlyctidales order was selec-
tively enriched in MAX2a-overexpressing roots compared with
soybean control, while Spizellomycetales and Sordariales orders
were less abundant compared with soybean control soybean.
Surprisingly, the symbiotic arbuscular fungal family Glomeraceae
was not significantly different in abundance between soybean
control and all overexpression treatments.
Predicted functional differences between treatments. Al-

though Tax4Fun functional prediction suggested distinct functional
capacities between bulk soil and the soybean rhizosphere bacterial

communities, there were no significant differences predicted be-
tween the soybean control and overexpression treatments (Fig. 9A).
FUNGuild was applied to link fungal taxa information with fungi
ecological guilds. The trophic modes composition of the fungal
communities differed only slightly between bulk soil controls and
rhizosphere as well as among overexpression treatments. Statisti-
cally, saprotrophs were significantly decreased in MAX2a-over-
expressing roots and symbiotrophs were significantly reduced in
MAX1d- and D14-overexpressing roots in comparison with the
soybean control treatment (Fig. 9B).

DISCUSSION

The rhizosphere is one of the most dynamic interfaces between
the soil and plant roots, with a specialized microbial community that
influences plant activities (Philippot et al. 2013). In this study, we
modified the expression of soybean (Williams 82) strigolactone
biosynthesis and its perception genes using the hairy root trans-
formation approach (Kereszt et al. 2007) and investigated the
resulting differences in soybean rhizosphere bacteria and fungi
communities. Our initial results indicate that altered expression of

Fig. 7. Fungi differential abundance analysis between overexpression constructs and wild-type rhizospheres. Differential abundance analysis was
conducted using LefSe software across all taxonomic levels. All of the listed taxa were either significantly enriched or depleted in the treatments versus
the control: A, MAX1d; B, D14; and C, MAX2a. Linear discriminant analysis (LDA) score estimated the effect size.
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strigolactone-related genes influences bacterial community assembly
in the rhizosphere of soybean, warranting future examination of the
role of strigolactone as an important signaling compound in shaping
the plant microbiome.
Because strigolactones have multifaceted functions both in

planta and ex planta (López-Ráez et al. 2017), the alterations of
rhizosphere bacterial and fungal taxa abundance identified here
could have been elicited directly or indirectly. Strigolactones act
as a direct signaling molecule after exudation into the rhizosphere
for some AMF species (Akiyama et al. 2005; Besserer et al. 2006)
and parasitic plants (Cook et al. 1966) but their influence on other
taxa is not yet well understood. Alternatively, strigolactones could
be utilized by bacteria as a specific preferred carbon source.
However, strigolactones are exuded at the nano- and picomolar
quantities outside of the plant and tend to decompose rapidly (Xie
et al. 2010), making their primary impact as a carbon source less
likely.
The differences in microbial communities could also be from

secondary effects of the strigolactone gene expression alterations.
Strigolactones act as signaling compounds within the plant, and
they are directly involved in both root morphology and hormone
cross-talk in many plant species (Waters et al. 2017). Haq et al.
(2017) generated GmMAX3b overexpression and knockdown lines
of soybean using the same type of hairy root system as the ex-
periments reported here. Overexpression increased nodulation
while knockdown of expression decreased nodulation. Also, en-
dogenous hormone levels were influenced: GmMAX3b over-
expression yielded reduced abscisic acid (ABA) and increased
jasmonic acid (JA) while the knockdown yielded the opposite
trends. This was also reflected in large-scale gene expression
changes for both overexpression and knockdown lines, including
altered expression of more than 2,000 genes. Rehman et al. (2018)
knocked down two other MAX genes, GmMAX1a and GmMAX4a,
in soybean also using a hairy root transgenic system and found
decreased nodulation in both lines. They also identified different
endogenous hormone levels: increased ABA and JA as well as
decreased auxin. It is still an open question as to whether these
alterations in other hormone levels and gene expression patterns
could yield different root exudation profiles for compounds other
than strigolactones, emphasizing the need for root exudate profiling
in future work.
The overexpression of strigolactone-associated genes modi-

fied soybean rhizosphere bacterial community. In this study, the
overexpression of strigolactone biosynthesis and signaling genes in
soybean roots had significant impacts on rhizosphere bacteria as-
sembly, with distinct bacterial community compositions between
the MAX1d-, D14-, and MAX2a-overexpressing roots and the
control Williams 82 roots. The bacterial composition ofMAX2a and
D14, both genes involved in strigolactone perception, were quite
similar to each other and differed from MAX1d, a gene involved in
strigolactone biosynthesis. It is worth noting that MAX2a partici-
pates in both strigolactones and karrikin (KAR) signaling pathways,
with the latter pathway being revealed to trigger seed germination
after fires or burning events (Flematti et al. 2009; Nelson et al. 2011;
Smith and Li 2014). The distinct differences of rhizosphere bacteria
between MAX1d andMAX2a overexpression, which is less evident
betweenMAX1d and D14 overexpression, may reflect the dual role
of the MAX2a gene in both strigolactones and KAR signaling
pathways (Nelson et al. 2011). Whether the microbial community
differences found here were influenced by KAR signaling is an
open question. Follow-up studies with mutants of the genes studied
here and other KAR signaling genes would benefit from directly
measuring strigolactone and KAR production and exudation rates to
address this.

Despite the taxonomic differences between treatments, we did
not observe a significant impact of the overexpression of strigo-
lactone genes on predicted rhizosphere bacterial metabolic path-
ways. This inconsistency between composition and functional

Fig. 8. Relative abundance bar plots for fungal taxa between treatments.
The P value was calculated based either on one-way analysis of
variance or nonparametric Kruskal-Wallis test, depending on the
normality of the data. Capital letters at the top of each bar represent the
differences between treatments based on a pairwise comparison
based either on Tukey’s honestly significant difference or Dunn’s test.
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response could be explained by the functional redundancy between
bacteria taxa. Alternatively, this discrepancy could be caused by a
lack of functional annotation for many soil bacterial species.
Recent studies applying gene manipulation and GR24 applica-

tions suggest that strigolactones impact legume nodulation (De
Cuyper et al. 2015; Foo and Davies 2011; Foo et al. 2013; Haq et al.
2017; Peláez-Vico et al. 2016; Rehman et al. 2018). The differential
abundance analysis from this study revealed stronger recruitment of
Rhizobiaceae spp. from bulk soil to the soybean rhizosphere in
response to overexpression of strigolactone biosynthesis and

perception genes, suggesting that strigolactones play a role in the
selective recruitment of microbes to the rhizosphere prior to the
establishment in nodules. We also detected a dramatically high
enrichment of the genus Rhizobium in the rhizosphere of over-
expressing roots in comparison with the soybean control roots.
However, we were not able to distinguish nitrogen-fixing rhizobia
from A. rhizogenes (the delivery agent of the overexpression
constructs) due to the insufficient resolution of 16S rRNA se-
quencing. Despite the widely reported increase in nodulation
stimulated by higher strigolactone concentrations, we did not detect

Fig. 9. Predicted functional profiles for bacterial and fungal communities. A, Bacteria metabolic pathway heatmap based on Tax4Fun2 functional
annotation; B, Stacked bar plot of fungi trophic modes based on FUNGuild mediated functional annotation. Predicted trophic modes are labeled
pathotrophs (P), saprotrophs (S), and symbiotrophs (M). Multitrophic assignments are combinations of those letters (e.g., PS for pathotroph-
saprotrophs).
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significant abundance changes between soybean control and over-
expressing roots for Bradyrhizobium and Sinorhizobium spp., the
most predominant nodule-formatting rhizobia of soybean (Lindström
et al. 2010). This is consistent withMcAdam et al. (2017), who found
that the deficiency of strigolactone biosynthesis gene CCD8 did not
change the exudation of flavonoids, which function as a chemo-
attractant to recruit Bradyrhizobium japonicum (Graham 1991; Khan
and Bauer 1988).
Our experiment revealed that the bacteria genera Shinella and

Bdellovibrio were significantly enriched in the soybean rhizosphere
across all three overexpressed genes compared with the soybean
control line. One Shinella strain, Shinella kummerowiae, was isolated
from the herbal legume Kummerowia stipulaceae nodules and found
to have nodulation and nitrogen-fixing genes (Lin et al. 2008), while
other Shinella spp. have been repeatedly found in contaminated
or wastewater functioning as nitrogen-reduction or sulfolane-
assimilating bacteria (Mu et al. 2018; Vaz-Moreira et al. 2010). The
enrichment of the Shinella genus in response to overexpression of
strigolactone could belong to any of the aforementioned strains,
suggesting shotgun metagenome sequencing as the next approach for
species-level identification. The genus Bdellovibrio includes bacteria
able to parasitize and kill other bacteria. Bdellovibrio bacteriovorus
has been reported as a predatory bacterium of soybean bacterial blight
disease and has been proposed as a potential biocontrol for other
phytopathogens (Olanya and Lakshman 2015; Scherff 1973). Our
finding is consistent with the study of Nasir et al. (2019), which
revealed decreased Bdellovibrio spp. abundance in the rhizosphere of
rice mutants defective in strigolactone biosynthesis (CCD7) and
signaling (D14) genes compared with wild-type rice (Nasir et al.
2019).
Strigolactone overexpression impacts individual fungal taxa

but is insignificant at the community level. After examining the
fungi compositional response to strigolactone overexpression, we did
not observe significant changes at the community level. This is in
contrast to Carvalhais et al. (2019), who disrupted CCD8/MAX4 in
Arabidopsis thaliana and found significant modulation of the rhi-
zosphere fungi community (Carvalhais et al. 2019). Strigolactones
are widely recognized as a triggering signal for arbuscular mycor-
rhizal fungi hyphae growth and activities (Akiyama et al. 2005;
Besserer et al. 2008), and disrupting gene expression may have a
larger community impact than our approach to overexpress genes.
FUNGuild predicted 4% of fungi in the soybean rhizosphere as
mycorrhizal. The surprisingly low abundance of mycorrhizal fungi
was also reported in a poplar root microbiome study (Cregger et al.
2018). The low abundance of mycorrhizal fungi could be due to
some fungal endophytes shifting their ecological strategy from an
endophytic to a saprophytic phenotype (Promputtha et al. 2007), a
possibility that is supported by a large percent of fungi in the
soybean rhizosphere being predicted as pathotroph-symbiotroph.
At the individual taxa level, we found significant and consistent

enrichment of F. solani species in MAX1d- and D14- but not
MAX2a-overexpressing root rhizospheres. F. solani is a species
complex that includes a number species characterized as fungal
pathogens causing sudden death syndrome, which was ranked as
one of the most devastating soybean diseases across the top 10
major soybean-growing areas (Roy 1997; Wrather et al. 2001).
Although ITS2 sequencing-based results were not sufficient to
determine whether these enriched F. solani are pathogenic or not,
these results warrants future investigation. There are a number of
reports indicating that strigolactones inhibit fungal pathogens based
on both gene mutation and GR24 assays (Belmondo et al. 2017; Dor
et al. 2011; Torres-Vera et al. 2014). However, other studies have
not found impacts of strigolactones on fungal disease development
(Blake et al. 2016; Foo et al. 2016).

Conclusion and perspectives. Although the plant hormones
strigolactones are known to influence plant–fungus interactions,
particularly AMF, we demonstrate that modulating the strigo-
lactone signaling and biosynthesis pathway alters the rhizosphere
bacteria community as well. For both fungi and bacteria, we
demonstrate microbial alterations in the rhizosphere in terms of
community composition, structure, and potential function. In-
creased occurrence of taxa such as Rhizobiaceae, Shinella,
Bdellovibrio, and F. solani indicate that this pathway may be
important for signaling of microbes involved in recruiting specific
taxa for nodulation and nitrogen fixation as well as influencing
microbe–microbe interactions and pathogens. Considering the
multifunction feature of strigolactones, a more detailed investi-
gation using stable transgenic lines, with and without functional
destruction in AMF or nodule formation together with root ex-
udation profiling, will provide a clearer picture of the direct and
indirect impacts exerted by strigolactones.
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