4 research outputs found

    A Highly Effective African Swine Fever Virus Vaccine Elicits a Memory T Cell Response in Vaccinated Swine

    No full text
    African Swine Fever Virus (ASFV) is the causative agent of a highly contagious and lethal vector-borne disease in suids. Recently, a live attenuated virus strain, developed using the currently circulating, virulent Georgia strain (ASFV-G) with a single gene deletion (ASFV-G-ΔI177L), resulted in an effective vaccine. Nevertheless, protective immune response mechanisms induced by this candidate are poorly understood. In this study, Yorkshire crossbred swine intramuscularly vaccinated with 106 50% hemadsorption dose (HAD50) of ASFV-G-ΔI177L or a vehicle control were challenged at 28 days post-inoculation (dpi) with 102 HAD50 of ASFV-G. Analysis of purified peripheral blood mononuclear cells following inoculation and challenge revealed that CD4+, CD8+ and CD4+CD8+ central memory T cells (CD44+CD25−CD27−CD62L+CCR7+, Tcm) decreased significantly by 28 dpi in ASFV-G-ΔI177L-vaccinated swine compared to baseline and time-matched controls. Conversely, CD4+, CD8+ and CD4+CD8+ effector memory T cells (CD44+CD25−CD27−CD62−CCR7−, Tem) increased significantly among ASFV-G-ΔI177L-vaccined swine by 28 dpi compared to baseline and time-matched controls. Additionally, the percentage of natural killer (NK), CD4+ and CD4+CD8+ Tem and CD8+ Tcm and Tem positive for IFNγ increased significantly following inoculation, surpassing that of controls by 28 dpi or earlier. These results suggest that NK and memory T cells play a role in protective immunity and suggest that studying these cell populations may be a surrogate immunity marker in ASF vaccination
    corecore