33 research outputs found

    Synthesizing the scientific evidence to inform the development of the post-2020 Global Framework on Biodiversity

    Get PDF
    Fil: DĂ­az, Sandra. Universidad Nacional de CĂłrdoba; Argentina.Fil: Broadgate, Wendy. Future Earth; Suecia.Fil: Declerck, Fabrice. Bioversity International; Italia.Fil: Dobrota, Susanna. Future Earth; Suecia.Fil: Krug, Cornelia. bioDISCOVERY; Suecia.Fil: Moersberg, Hannah. Future Earth; Francia.Fil: Obura, David. Coastal Oceans Research and Development – Indian Ocean; Kenya.Fil: Spehn, Eva. Forum Biodiversity; Suiza.Fil: Tewksbury, Joshua. Future Earth; Estados Unidos.Fil: Verburg, Peter. Vrije Universiteit Amsterdam; PaĂ­ses Bajos.Fil: Zafra Calvo, Noelia. Future Earth; Suecia.Fil: Bellon, Mauricio. ComisiĂłn Nacional para el Conocimiento y Uso de la Biodiversidad; MĂ©xico.Fil: Burgess, Neil. United Nations Environment Programme World Conservation Monitoring Centre; Reino Unido.Fil: Cariño, Joji. Forest Peoples Programme; Reino Unido.Fil: Castañeda Alvarez, Nora. Global Crop Diversity Trust; Alemania.Fil: Cavender-Bares, Jeannine. University of Minnesota; Estados Unidos.Fil: Chaplin Kramer, Rebecca. Stanford University; Estados Unidos.Fil: De Meester, Luc. Katholieke Universiteit Leuven; BĂ©lgica.Fil: Dulloo, Ehsan. Consultative Group for International Agricultural Research; Francia.Fil: FernĂĄndez-Palacios, JosĂ© MarĂ­a. Universidad de La Laguna; España.Fil: Garibaldi, Lucas A. Universidad Nacional de RĂ­o Negro. Instituto de Investigaciones en Recursos Naturales, AgroecologĂ­a y Desarrollo Rural; Argentina.Fil: Garibaldi, Lucas A. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Instituto de Investigaciones en Recursos Naturales, AgroecologĂ­a y Desarrollo Rural; Argentina.Fil: Hill, Samantha. United Nations Environment Programme World Conservation Monitoring Centre; Reino Unido.Fil: Isbell, Forest. University of Minnesota; Estados Unidos.Fil: Leadley, Paul. UniversitĂ© Paris-Saclay; Francia.Fil: Liu, Jianguo. Michigan State University; Estados Unidos.Fil: Mace, Georgina M. University College London; Reino Unido.Fil: Maron, Martine. The University of Queensland; Australia.Fil: MartĂ­n-LĂłpez, Berta. Leuphana University LĂŒneburg; Alemania.Fil: McGowan, Philip. University of Newcastle; Australia.Fil: Pereira, Henrique. German Centre for Integrative Biodiversity Research; Alemania.Fil: Purvis, Andy. Imperial College London. Grand Challenges in Ecosystems and the Environment; Reino Unido.Fil: Reyes-GarcĂ­a, Victoria. Universidad AutĂłnoma de Barcelona; España.Fil: Rocha, Juan. Future Earth; Suecia.Fil: Rondinini, Carlo. Sapienza-UniversitĂ  di Roma; Italia.Fil: Shannon, Lynne. University of Cape Town; SudĂĄfrica.Fil: Shaw, Rebecca. World Wildlife Fund; Estados Unidos.Fil: Shin, Yunne Jai. University of Cape Town. Marine Research Institute. Department of Biological Sciences; SudĂĄfrica.Fil: Snelgrove, Paul. Memorial University of Newfoundland; CanadĂĄ.Fil: Strassburg, Bernardo. International Institute for Sustainability; Brasil.Fil: Subramanian, Suneetha.United Nations University; JapĂłn.Fil: Visconti, Piero. International Institute for Applied Systems Analysis; Austria.Fil: Watson, James. Wildlife Conservation Society; Estados Unidos.Fil: Zanne, Amy. The George Washington University; Estados Unidos.Fil: Bruford, Michael. Cardiff University; Gales.Fil: Colli, Licia. UniversitĂ  Cattolica del Sacro Cuore; Italia.Fil: Azeredo de Dornelas, Maria. University of St Andrews; Escocia.Fil: Bascompte, Jordi. UniversitĂ€t ZĂŒrich; Suiza.Fil: Forest, Felix. Royal Botanic Gardens; Reino Unido.Fil: Hoban, Sean. The Morton Arboretum; Estados Unidos.Fil: Jones, Sarah. Consultative Group for International Agricultural Research; Francia.Fil: Jordano, Pedro. Consejo Superior de Investigaciones CientĂ­ficas; España.Fil: Kassen, Rees. University of Ottawa; CanadĂĄ.Fil: Khoury, Colin. Consultative Group for International Agricultural Research; Francia.Fil: Laikre, Linda. Stockholms Universitet; Suecia.Fil: Maxted, Nigel. University of Birmingham; Reino Unido.Fil: Miloslavich, Patricia. Universidad SimĂłn BolĂ­var; Venezuela.Fil: Moreno Mateos, David. Basque Centre for Climate Change; España.Fil: Ogden, Rob. The University of Edinburgh; Reino Unido.Fil: Segelbacher, Gernot. Albert-Ludwigs-UniversitĂ€t Freiburg; Alemania.Fil: Souffreau, Caroline. Katholieke Universiteit Leuven; BĂ©lgica.Fil: Svenning, Jens Christian. Aarhus University; Dinamarca.Fil: VĂĄzquez, Ella. Universidad Nacional AutĂłnoma de MĂ©xico; MĂ©xico.This report is the result of a meeting which aimed to offer scientific guidance to the development under the Convention on Biological Diversity (CBD) of the post-2020 Global Biodiversity Framework focussing on its contribution to the 2030 Mission and 2050 Vision. We provide a synthesis of the scientific and technical justification, evidence base and feasibility for outcome-oriented goals on nature and its contributions to people, including biodiversity at different levels from genes to biomes. The report is structured to respond to the Zero Draft of the post-2020 Global Biodiversity Framework

    ESHRE good practice recommendations for add- ons in reproductive medicine

    Get PDF
    The draft of the paper “ESHRE Good practice recommendations for add-ons in reproductive medicine” was published for public review for 4 weeks, between 1 November and 1 December 2022. This report summarizes all reviewers, their comments and the reply of the working group and is published on the ESHRE website as supporting documentation to the paper. During the stakeholder review, a total of 274 comments (including 24 duplicates) were received from 46 reviewers. Reviewers included professionals and representatives of donor-conceived offspring organisations. The comments were focussed on the content of the guideline (209 comments), language and style (31 comments), or were remarks that did not require a reply (10 comments). All comments to the language and format were checked and corrected where relevant. The comments to the content of the paper (n=209) were assessed by the working group and where relevant, adaptations were made in the paper (n=94; 45%). Adaptations included revisions and/or clarifications of the text, and amendments to the recommendations. For a number of comments, the working group considered them outside the scope of the paper or not appropriate/relevant (n=115; 55%).peer-reviewe

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e., a controlling message) compared with no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared with the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing. Controlled motivation was associated with more defiance and less long-term behavioral intention to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    Death and the Societies of Late Antiquity

    Get PDF
    Ce volume bilingue, comprenant un ensemble de 28 contributions disponibles en français et en anglais (dans leur version longue ou abrĂ©gĂ©e), propose d’établir un Ă©tat des lieux des rĂ©flexions, recherches et Ă©tudes conduites sur le fait funĂ©raire Ă  l’époque tardo-antique au sein des provinces de l’Empire romain et sur leurs rĂ©gions limitrophes, afin d’ouvrir de nouvelles perspectives sur ses Ă©volutions possibles. Au cours des trois derniĂšres dĂ©cennies, les transformations considĂ©rables des mĂ©thodologies dĂ©ployĂ©es sur le terrain et en laboratoire ont permis un renouveau des questionnements sur les populations et les pratiques funĂ©raires de l’AntiquitĂ© tardive, pĂ©riode marquĂ©e par de multiples changements politiques, sociaux, dĂ©mographiques et culturels. L’apparition de ce qui a Ă©tĂ© initialement dĂ©signĂ© comme une « Anthropologie de terrain », qui fut le dĂ©but de la dĂ©marche archĂ©othanatologique, puis le rĂ©cent dĂ©veloppement d’approches collaboratives entre des domaines scientifiques divers (archĂ©othanatologie, biochimie et gĂ©ochimie, gĂ©nĂ©tique, histoire, Ă©pigraphie par exemple) ont Ă©tĂ© dĂ©cisives pour le renouvellement des problĂ©matiques d’étude : rĂ©vision d’anciens concepts comme apparition d’axes d’analyse inĂ©dits. Les recherches rassemblĂ©es dans cet ouvrage sont articulĂ©es autour de quatre grands thĂšmes : l’évolution des pratiques funĂ©raires dans le temps, l’identitĂ© sociale dans la mort, les ensembles funĂ©raires en transformation (organisation et topographie) et les territoires de l’empire (du cƓur aux marges). Ces Ă©tudes proposent un rĂ©examen et une rĂ©vision des donnĂ©es, tant anthropologiques qu’archĂ©ologiques ou historiques sur l’AntiquitĂ© tardive, et rĂ©vĂšlent, Ă  cet Ă©gard, une mosaĂŻque de paysages politiques, sociaux et culturels singuliĂšrement riches et complexes. Elles accroissent nos connaissances sur le traitement des dĂ©funts, l’emplacement des aires funĂ©raires ou encore la structure des sĂ©pultures, en rĂ©vĂ©lant une diversitĂ© de pratiques, et permettent au final de relancer la rĂ©flexion sur la maniĂšre dont les sociĂ©tĂ©s tardo-antiques envisagent la mort et sur les Ă©lĂ©ments permettant d’identifier et de dĂ©finir la diversitĂ© des groupes qui les composent. Elles dĂ©montrent ce faisant que nous pouvons vĂ©ritablement apprĂ©hender les structures culturelles et sociales des communautĂ©s anciennes et leurs potentielles transformations, Ă  partir de l’étude des pratiques funĂ©raires.This bilingual volume proposes to draw up an assessment of the recent research conducted on funerary behavior during Late Antiquity in the provinces of the Roman Empire and on their borders, in order to open new perspectives on its possible developments. The considerable transformations of the methodologies have raised the need for a renewal of the questions on the funerary practices during Late Antiquity, a period marked by multiple political, social, demographic and cultural changes. The emergence field anthropology, which was the beginning of archaeothanatology, and then the recent development of collaborative approaches between various scientific fields (archaeothanatology, biochemistry and geochemistry, genetics, history, epigraphy, for example), have been decisive. The research collected in this book is structured around four main themes: Evolution of funerary practices over time; Social identity through death; Changing burial grounds (organisation and topography); Territories of the Empire (from the heart to the margins). These studies propose a review and a revision of the data, both anthropological and archaeological or historical on Late Antiquity, and reveal a mosaic of political, social, and cultural landscapes singularly rich and complex. In doing so, they demonstrate that we can truly understand the cultural and social structures of ancient communities and their potential transformations, based on the study of funerary practices

    A global experiment on motivating social distancing during the COVID-19 pandemic

    Get PDF
    Finding communication strategies that effectively motivate social distancing continues to be a global public health priority during the COVID-19 pandemic. This cross-country, preregistered experiment (n = 25,718 from 89 countries) tested hypotheses concerning generalizable positive and negative outcomes of social distancing messages that promoted personal agency and reflective choices (i.e., an autonomy-supportive message) or were restrictive and shaming (i.e. a controlling message) compared to no message at all. Results partially supported experimental hypotheses in that the controlling message increased controlled motivation (a poorly-internalized form of motivation relying on shame, guilt, and fear of social consequences) relative to no message. On the other hand, the autonomy-supportive message lowered feelings of defiance compared to the controlling message, but the controlling message did not differ from receiving no message at all. Unexpectedly, messages did not influence autonomous motivation (a highly-internalized form of motivation relying on one’s core values) or behavioral intentions. Results supported hypothesized associations between people’s existing autonomous and controlled motivations and self-reported behavioral intentions to engage in social distancing: Controlled motivation was associated with more defiance and less long-term behavioral intentions to engage in social distancing, whereas autonomous motivation was associated with less defiance and more short- and long-term intentions to social distance. Overall, this work highlights the potential harm of using shaming and pressuring language in public health communication, with implications for the current and future global health challenges

    How Do Alien Plants Fit in the Space-Phylogeny Matrix?

    No full text
    <div><p>Recent advances in the field of plant community phylogenetics and invasion phylogenetics are mostly based on plot-level data, which do not take into consideration the spatial arrangement of individual plants within the plot. Here we use within-plot plant coordinates to investigate the link between the physical distance separating plants, and their phylogenetic relatedness. We look at two vegetation types (forest and grassland, similar in species richness and in the proportion of alien invasive plants) in subtropical coastal KwaZulu-Natal, South Africa. The relationship between phylogenetic distance and physical distance is weak in grassland (characterised by higher plant densities and low phylogenetic diversity), and varies substantially in forest vegetation (variable plant density, higher phylogenetic diversity). There is no significant relationship between the proportion of alien plants in the plots and the strength of the physical-phylogenetic distance relationship, suggesting that alien plants are well integrated in the local spatial-phylogenetic landscape.</p></div

    Cardiac cell therapy: overexpression of connexin43 in skeletal myoblasts and prevention of ventricular arrhythmias.: Cardiac cell and Cx43-gene therapy for arrhythmias

    Get PDF
    International audienceCell-based therapies have great potential for the treatment of cardiovascular diseases. Recently, using a transgenic mouse model Roell et al. reported that cardiac engraftment of connexin43 (Cx43)-overexpressing myoblasts in vivo prevents post-infarct arrhythmia, a common cause of death in patients following heart attack. We carried out a similar study but in a clinically relevant context via transplantation of autologous connexin43-overexpressing myoblasts in infarcted rats. Seven days after coronary ligation, rats were randomized into three groups: a control group injected with myoblasts, a null group injected with myoblasts transduced with an empty lentivirus vector (null) and a Cx43 group injected with myoblasts transduced with a lentivirus vector encoding connexin43. In contrast to Roell's report, arrhythmia occurrence was not statistically different between groups (58%, 64% and 48% for the control (n= 12), null (n= 14) and Cx43 (n= 23) groups, respectively, P= 0.92). Using ex vivo intramural monophasic action potential recordings synchronous electrical activity was observed between connexin43-overexpressing myoblasts and host cardiomyocytes, whereas such synchrony did not occur in the null-transduced group. This suggests that ex vivo connexin43 gene transfer and expression in myoblasts improved intercellular electrical coupling between myoblasts and cardiomyocytes. However, in our model such electrical coupling was not sufficient to decrease arrhythmia induction. Therefore, we would suggest a note of caution on the use of combined Cx43 gene and cell therapy to prevent post-infarct arrhythmias in heart failure patients

    Factors potentially influencing the results on Mantel tests in our plots.

    No full text
    <p>Graphs exploring links between different plot-level variables and Mantel test r values for grassland (circles) and forest (diamonds) plots. Points above the dashed line indicate significant Mantel tests.</p

    Forest-grassland comparisons.

    No full text
    <p>The two vegetation types are compared in terms of number of plant species, phylogenetic diversity, representation of alien species, and Mantel test r values (box-and-whisker plots).</p
    corecore