21 research outputs found
A regenerative urban stormwater management methodology. The role of SuDS construction and monitoring in the transition of a Mediterranean city
Tesis por compendio[EN] Under the well-known slogan 'think global, act local', cities in the 21st century face the enor-mous challenge of catalyzing, intensifying and accelerating sustainable urban transformations. Without losing a holistic view, the methodology presented in this thesis places the focus on 're-source management and climate mitigation and adaptation', in particular in urban stormwater management, proposing processes that can bring about the required change, shaped by the place-based approach of the regenerative sustainability paradigm.
Building upon literature and practice that supports a flexible approach to stormwater manage-ment in urban environments that mimic natural processes and predevelopment hydrology (Sus-tainable Drainage Systems, SuDS) as one way to, amongst others, help to prevent and adapt to climate change, the thesis highlights the relevance of the connection to the place for adoption of best practices that conduct towards a regenerative system. Hence, it incorporates this con-nection to the place to the SuDS representation, naming it the SuDS 'landed rocket'.
The proposed methodology includes a conceptual framework, specific method and tools, that allows for the understanding and the characterization of the current situation of a urban stormwater system in a process that guides future actions to move towards the desired regen-erative urban built environment concept, with a place-based holistic view.
This methodology has been applied to Benaguasil, a Mediterranean city, where stormwater management is the local authority's responsibility and has been historically guided by main-stream conventional drainage practices. The thesis shows how, by taking a multi-dimensional and trans-disciplinary approach to solve environmental problems, future actions can be proper-ly addressed. Working with academia has been essential to develop wider evidence base. In this case, a sequence of research projects has advanced the innovative approach to stormwater management in Benaguasil, but it is contended that this methodology could be applied to any urban context.
The thesis aims to enhance smart governance by providing information about the successful implementation and monitoring of SuDS showcase sites in Mediterranean Spain. These show-case sites are catalysts in the transition towards regenerative urban built environments in the region. In addition, it provides international examples that add further credence for improved urban ecological infrastructure by demonstrating what success can look like.[ES] Bajo el conocido eslogan 'piensa global, actúa local', las ciudades del siglo XXI se enfrentan al gran reto de catalizar, intensificar y acelerar las transformaciones hacia un urbanismo sostenible. Desde una perspectiva holística, la metodología presentada en esta tesis se centra en 'la gestión de los recursos y la adaptación y mitigación al cambio climático', en particular en la gestión de las escorrentías urbanas, proponiendo los procesos que pueden ayudar al cambio requerido, bajo el enfoque del paradigma de la sostenibilidad regenerativa local.
A partir de las referencias bibliográficas y experiencias que avalan a los Sistemas de Drenaje Sostenible (SuDS) como enfoque flexible a la gestión de las escorrentías urbanas, tratando de mimetizar los procesos hidrológicos previos al desarrollo urbano (que entre otros, contribuyen a la prevención y adaptación frente al cambio climático de las ciudades), la tesis subraya la relevancia de la conexión con el lugar para la selección de las mejores soluciones que lo conduzcan hacia un sistema regenerativo. Así, se incorpora esta conexión con el lugar a la representación de los SuDS, dándole el nombre de 'SuDS landed rocket'.
La metodología propuesta incluye un marco conceptual, un método y herramientas específicas que permiten el entendimiento y caracterización de la situación actual de un sistema de drenaje urbano en un proceso que guíe acciones futuras para progresar hacia el concepto del medioambiente urbano regenerativo deseado, con una perspectiva holística local.
La metodología se ha aplicado en Benaguasil, una ciudad mediterránea, donde la gestión del agua de lluvia es responsabilidad local y que ha estado influenciada históricamente por prácticas convencionales de drenaje. La tesis muestra cómo adoptando un enfoque multidimensional y multidisciplinar para resolver problemas medioambientales, las acciones futuras se pueden plantear correctamente. El trabajo con las instituciones académicas se ha demostrado esencial para desarrollar evidencias de base más amplias. En este caso, una serie de proyectos de investigación ha permitido el avance de Benaguasil hacia una gestión del agua de lluvia más innovadora. La experiencia demuestra que la metodología podría ser aplicada a cualquier otro contexto urbano.
La tesis pretende mejorar la gobernanza inteligente proveyendo información respecto de la implementación y monitorización exitosas de SuDS en experiencias piloto en la España mediterránea. Estas demostraciones son catalizadoras de la transición hacia un medio ambiente urbano regenerativo en la región. Además, presenta ejemplos que se añaden al catálogo internacional de experiencias, mostrando el camino del éxito hacia un entorno urbano más saludable y habitable.[CA] Sota el conegut lema 'pensa global, actua local', les ciutats del segle XXI s'enfronten al gran repte de catalitzar, intensificar i accelerar les transformacions cap a un urbanisme sostenible. Des d'una perspectiva holística, la metodologia presentada en esta tesis es centra en 'la gestió dels recursos i la adaptació i mitigació al canvi climàtic', en particular en la gestió de les escorrenties urbanes, proposant processos que poden ajudar al canvi requés, des d'una òptica del paradigma de la sostenibilitat regenerativa local.
A partir de les referències bibliogràfiques i experiències que avalen els Sistemes de Drenatge Sostenible (SuDS) com una aproximació flexible a la gestió de les escorrenties urbanes, tractant de mimetitzar els processos hidrològics previs al desenvolupament urbà (que entre altres, contribueixen a la prevenció i adaptació al canvi climàtic de les ciutats), la tesis subratlla la rellevància de la connexió al lloc per a la selecció de les millors solucions que el puguen conduir cap a un sistema regeneratiu. D'esta manera, s'incorpora esta connexió al lloc en la representació dels SuDS, donant-li el nom de 'SuDS landed rocket'.
La metodologia proposta inclou un marc conceptual, un mètode i unes eines especifiques que permeten l'enteniment i caracterització de la situació actual d'un sistema de drenatge urbà en un procés que guie accions futures per a progressar cap al concepte de medi ambient urbà regeneratiu desitjat, amb una perspectiva holística local.
La metodologia s'ha aplicat a Benaguasil, una ciutat mediterrània, on la gestió de l'aigua de pluja és responsabilitat local, i que ha estat influenciada històricament per pràctiques convencionals de drenatge. La tesis mostra com adoptant un punt de mira multidimensional i multidisciplinari per a resoldre problemes medi ambientals, les accions futures es poden plantejar correctament. El treball amb les institucions acadèmiques s'ha demostrat essencial per a crear evidències de base més amples. En este cas, una sèrie de projectes europeus d'investigació ha permès l'avanç de Benaguasil cap a una gestió de l'aigua de pluja més innovadora. L'experiència demostra que la metodologia podria ser aplicada a qualsevol altre context urbà.
La tesis pretén millorar la governança intel¿ligent aportant informació respecte de la implementació i monitorització exitoses de SuDS en experiències pilot en la Espanya mediterrània. Estes demostracions son catalitzadores de la transició cap a un medi ambient urbà regeneratiu en la regió. A més a més, presenta exemples que s'afegeixen al catàleg internacional d'experiències, mostrant el camí del èxit cap a un entorn urbà més saludable i habitable.Perales Momparler, CS. (2015). A regenerative urban stormwater management methodology. The role of SuDS construction and monitoring in the transition of a Mediterranean city [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/59063TESISCompendi
Enhancing local action planning through quantitative flood risk analysis: a case study in Spain
[EN] This article presents a method to incorporate and promote quantitative risk analysis to support local action planning against flooding. The proposed approach aims to provide a framework for local flood risk analysis, combining hazard mapping with vulnerability data to quantify risk in terms of expected annual affected population, potential injuries, number of fatalities, and economic damages. Flood risk is estimated combining GIS data of loads, system response, and consequences and using event tree modelling for risk calculation. The study area is the city of Oliva, located on the eastern coast of Spain. Results from risk modelling have been used to inform local action planning and to assess the benefits of structural and non-structural risk reduction measures. Results show the potential impact on risk reduction of flood defences and improved warning communication schemes through local action planning: societal flood risk (in terms of annual expected affected population) would be reduced up to 51% by combining both structural and nonstructural measures. In addition, the effect of seasonal population variability is analysed (annual expected affected population ranges from 82 to 107 %, compared with the current situation, depending on occupancy rates in hotels and campsites). Results highlight the need for robust and standardized methods for urban flood risk analysis replicability at regional and national scale.This research was conducted within the framework of the INICIA project, funded by the Spanish Ministry of Economy and Competitiveness (BIA2013-48157-C2-1-R). The article processing charges for this open-access publication will be covered by the INICIA project. We would like to thank the city of Oliva for their willingness to share data, knowledge, and experience with the authors and for initiating this risk-informed journey.Castillo-Rodríguez, J.; Escuder Bueno, I.; Perales Momparler, S.; Porta-Sancho, J. (2016). Enhancing local action planning through quantitative flood risk analysis: a case study in Spain. Natural Hazards and Earth System Sciences. 16(7):1699-1718. https://doi.org/10.5194/nhess-16-1699-2016S16991718167Barredo, J. I.: Normalised flood losses in Europe: 1970–2006, Nat. Hazards Earth Syst. Sci., 9, 97–104, https://doi.org/10.5194/nhess-9-97-2009, 2009.Castillo-Rodriguez, J. T., Escuder-Bueno, I., Altarejos-García, L., and Serrano-Lombillo, A.: The value of integrating information from multiple hazards for flood risk analysis and management, Nat. Hazards Earth Syst. Sci., 14, 379–400, https://doi.org/10.5194/nhess-14-379-2014, 2014.DEFRA: FD2321/TR1 – The Flood Risks to People Methodology, London, available at: www.defra.gov.uk/environ/fcd/research (last access: February 2016), 2006.EC: Guide to Cost Benefit Analysis of Investment Projects: European Commission, DG for Regional and Urban Policy, Brussels BELGIUM, https://doi.org/10.2776/97516, 2008.Escuder-Bueno, I., Castillo-Rodriguez, J. T., Zechner, S., Jöbstl, C., Perales-Momparler, S., and Petaccia, G.: A quantitative flood risk analysis methodology for urban areas with integration of social research data, Nat. Hazards Earth Syst. Sci., 12, 2843–2863, https://doi.org/10.5194/nhess-12-2843-2012, 2012.European Parliament: DIRECTIVE 2007/60/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 October 2007 on the assessment and management of flood risks, L 228, 27–34, 2007.Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., and Savage, W. Z.: Guidelines for landslide susceptibility, hazard and risk zoning for land use planning, Eng. Geol., 102, 85–98, https://doi.org/10.1016/j.enggeo.2008.03.022, 2008.Fuchs, S., Spachinger, K., Dorner, W., Rochman, J., and Serrhini, K.: Evaluating cartographic design in flood risk mapping, Environ. Hazards, 8, 52–70, https://doi.org/10.3763/ehaz.2009.0007, 2009.Fuchs, S., Keiler, M., and Zischg, A.: A spatiotemporal multi-hazard exposure assessment based on property data, Nat. Hazards Earth Syst. Sci., 15, 2127–2142, https://doi.org/10.5194/nhess-15-2127-2015, 2015.Gamper, C. D. and Turcanu, C.: On the governmental use of multi-criteria analysis, Ecol. Econ., 2, 298–307, https://doi.org/10.1016/j.ecolecon.2007.01.010, 2007.Generalitat Valenciana: Plan de Acción Territorial sobre prevención del Riesgo de Inundación en la Comunitat Valenciana (PATRICOVA), Valencia, 67–72, 2015.Hall, J. W., Meadowcroft, I. C., Sayers, P. B., and Bramley, M. E.: Integrated Flood Risk Management in England and Wales, 2003.Hennig, C., Dise, K., and Muller, B.: Achieiving Public Protection with Dam Safety Risk Assessment Practices, Nat. Hazards Rev., 4, 126–135, https://doi.org/10.1061/(ASCE)1527-6988(2003)4:3(126)1997, 2003.Hijós Bitrián, F., Mañueco Pfeiffer, M. G., and Segura Notario, N.: Comité nacional español de grandes presas, Congreso Nacional de Presas, Proc. of Risk-Based Decision Making in Water Resources VIII, edited by: Yacov, Y., Haimes, D., Moser, A., and Stakhiv, E. Z., 19–32, 2010.Jongman, B., Kreibich, H., Apel, H., Barredo, J. I., Bates, P. D., Feyen, L., Gericke, A., and Neal, J.: Comparative flood damage model assessment?: towards a European approach, Nat. Hazards Earth Syst. Sci., 12, 3733–3752, https://doi.org/10.5194/nhess-12-3733-2012, 2012.Jongman, B., Koks, E. E., Husby, T. G., and Ward, P. J.: Increasing flood exposure in the Netherlands: implications for risk financing, Nat. Hazards Earth Syst. Sci., 14, 1245–1255, https://doi.org/10.5194/nhess-14-1245-2014, 2014.Jonkman, S. N., Vrijling, J. K., and Vrouwenvelder, A. C. W. M.: Methods for the estimation of loss of life due to floods?: a literature review and a proposal for a new method, Nat. Hazards, 46, 353–389, https://doi.org/10.1007/s11069-008-9227-5, 2008.Klijn, F. and Schweckendiek, T.: Comprehensive Flood Risk Management: Research for Policy and Practice, CRC Press, Boca Raton, 297–330, 2012.Klijn, F., Kreibich, H., De Moel, H., and Penning-rowsell, E.: Adaptive flood risk management planning based on a comprehensive flood risk conceptualisation, Mitig. Adapt. Strat. Glob. Chang., 20, 845–864, https://doi.org/10.1007/s11027-015-9638-z, 2015.MAGRAMA: Propuesta de mínimos para la metodología de realización de los mapas de riesgo de inundación, Madrid, Ministerio de Agricultura, Alimentación y Medio Ambiente, Madrid, Spain, 2013.Marcotullio, P. J. and McGranahan, G.: Scaling Urban Environmental Challenges: From local to global and back, Earthscan with UNU-IAS and IIED, Earthscan, London, Sterling, VA, 2006.Mayors Adapt: The new integrated covenant of mayors for climate and energy, www.mayors-adapt.eu (last access: July 2016), 2015.Mazzorana, B., Comiti, F., Scherer, C., and Fuchs, S.: Developing consistent scenarios to assess fl ood hazards in mountain streams, J. Environ. Manage., 94, 112–124, https://doi.org/10.1016/j.jenvman.2011.06.030, 2012.Mazzorana, B., Comiti, F., and Fuchs, S.: A structured approach to enhance flood hazard assessment in mountain streams, Nat. Hazards, 67, 991–1009, https://doi.org/10.1007/s11069-011-9811-y, 2013.Merz, B. and Thieken, A. H.: Flood risk curves and uncertainty bounds, Natural Hazards, 51, 437–458, https://doi.org/10.1007/s11069-009-9452-6, 2009.Merz, B., Kreibich, H., Schwarze, R., and Thieken, A.: Assessment of economic flood damage, Nat. Hazards Earth Syst. Sci., 1697–1724, https://doi.org/10.5194/nhess-10-1697-2010, 2010.Meyer, V., Scheuer, S., and Haase, D.: A multicriteria approach for flood risk mapping exemplified at the Mulde river, Germany, Nat. Hazards, 48, 17–39, https://doi.org/10.1007/s11069-008-9244-4, 2009.Meyer, V., Kuhlicke, C., Luther, J., Fuchs, S., Priest, S., Dorner, W., Serrhini, K., Pardoe, J., and Mccarthy, S.: Recommendations for the user-specific enhancement of flood maps, Nat. Hazards Earth Syst. Sci., 12, 1701–1716, https://doi.org/10.5194/nhess-12-1701-2012, 2012.Miller, A., Jonkman, S. N., and Van Ledden, M.: Risk to life due to flooding in post-Katrina New Orleans, Nat. Hazards Earth Syst. Sci., 15, 59–73, https://doi.org/10.5194/nhess-15-59-2015, 2015.Morales-Torres, A., Serrano-Lombillo, A., Escuder-Bueno, I., and Altarejos-García, L.: The suitability of risk reduction indicators to inform dam safety management, Struct. Infrastruct. Eng., 12, 2479, https://doi.org/10.1080/15732479.2015.1136830, 2016.Nakicenovic, N., Lempert, R., and Janetos, A.: Special Issue of Climatic Change on the framework for the development of new socioeconomics scenarios for climate change research, Clim. Change, 122, 351–361, https://doi.org/10.1007/s10584-013-0982-2, 2013.Parker, D. J., Tunstall, S., and Wilson, T.: Socio-Economic Benefits of Flood Forecasting and Warning, in: International conference on innovation advances and implementation of flood forecasting technology, Session 8, 1–11, ACTIF, available at: http://www.actif-ec.net/conference2005/proceedings/index.html, (last access: July 2016), Tromso, Norway, 2005.Penning-Rowsell, E. C., Priest, S. J., Parker, D. J., Morris, J., Tunstall, S. M., Viavatenne, C., Chatterton, J., and D., O.: Flood and Coastal Erosion Risk Management, A manual for economic appraisal, London, Routledge, Chapter 4, 2013.Quan-Luna, B., Blahut, J., Westen, C. J. Van, Sterlacchini, S., Asch, T. W. J., and Van and Akbas, S. O.: The application of numerical debris flow modelling for the generation of physical vulnerability curves, Nat. Hazards Earth Syst. Sci., 11, 2047–2060, https://doi.org/10.5194/nhess-11-2047-2011, 2011.Ramis, C., Homar, V., Amengual, A., Romero, R., and Alonso, S.: Daily precipitation records over mainland Spain and the Balearic Islands, Nat. Hazards Earth Syst. Sci., 13, 2483–2491, https://doi.org/10.5194/nhess-13-2483-2013, 2013.Sayers, P. B., Horritt, M., Penning-Rowsell, E., and McKenzie, A.: Climate Change Risk Assessment 2017 Projections of future flood risk in the UK, London, 69–73, 2015.Serrano-Lombillo, A., Escuder-Bueno, I., De Membrillera-Ortuño, M. G., and Altarejos-García, L.: Methodology for the Calculation of Annualized Incremental Risks in Systems of Dams, Risk Anal., 31, 1000–1015, https://doi.org/10.1111/j.1539-6924.2010.01547.x, 2011.Totschnig, R. and Fuchs, S.: Mountain torrents: Quantifying vulnerability and assessing uncertainties, Eng. Geol., 155, 31–44, https://doi.org/10.1016/j.enggeo.2012.12.019, 2013.UK Health and Safety Executive: Reducing Risks: Protecting People – HSE's decision making process, Norwich, Health and Safety Executive, 40–48, 2001.Université Catholique de Louvain: EM-DAT Database: The OFDA/CRED International Disaster Database, available at: http://www.emdat.be/ (last access: 1 October 2015), 2015.USACE: Economic Guidance Memorandum (EGM) 01-03: Generic Depth-Damage Relationships, 2000.Velasco, M., Cabello, À., and Russo, B.: Flood damage assessment in urban areas, Application to the Raval district of Barcelona using synthetic depth damage curves, Urban Water J., https://doi.org/10.1080/1573062X.2014.994005, 2015.Vrijling, J. K.: Probabilistic design of water defense systems in The Netherlands, 74, 337–344, 2001.Ward, P. J., De Moel, H., and Aerts, J. C. J. H.: How are flood risk estimates affected by the choice of return-periods?, Nat. Hazards Earth Syst. Sci., 11, 3181–3195, https://doi.org/10.5194/nhess-11-3181-2011, 2011.Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., Beek, R. Van, Bierkens, M. F. P., and Ligtvoet, W.: Assessing flood risk at the global scale: model setup, results, and sensitivity, Environ. Res. Lett., 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013a.Ward, P. J., Jongman, B., Weiland, F. S., Bouwman, A., van Beek, R., Bierkens, M. F. P., Ligtvoet, W., and Winsemius, H. C.: Assessing flood risk at the global scale: model setup, results, and sensitivity, Environ. Res. Lett., 8, 044019, https://doi.org/10.1088/1748-9326/8/4/044019, 2013b.Winsemius, H. C., Van Beek, L. P. H., Jongman, B., Ward, P. J., and Bouwman, A.: A framework for global river flood risk assessments, Hydrol. Earth Syst. Sci., 17, 1871–1892, https://doi.org/10.5194/hess-17-1871-2013, 2013
Sustainable Urban Drainage Systems in Spain: A Diagnosis
ABSTRACT: Sustainable urban drainage systems (SUDS) were almost unknown in Spain two decades ago; today, urban drainage in the country is transitioning towards a more sustainable and regenerative management in a global context where green policies are gaining prominence. This research establishes a diagnosis of SUDS in Spain and examines the extent to which the country is moving towards the new paradigm in three dimensions: (a) the governance and social perception of the community, (b) the regulative background, and (c) the implementation and the technical performance of SUDS. The diagnosis identifies barriers that hinder the change. Then, we define the challenges that Spain has to face to overcome obstacles that delay the transition. Barriers to the governance sphere are related to the lack of involvement, knowledge, and organisational responsibilities. Within the regulative framework, the absence of national standards hinders the general implementation at the national scale, although few regional and local authorities are taking steps in the right direction with their own regulations. From the technical perspective, SUDS performance within the Spanish context was determined, although some shortcomings are still to be investigated. Despite the slowdown caused by the hard recession periods and the more recent political instability, SUDS implementation in Spain is today a fact, and the country is close to reaching the stabilisation stage.This research is developed within the framework of the Spanish Plan Estatal de Investigación Científica y Técnica y de Innovación 2017–2020, project HOFIDRAIN (Holistic characterization of filtering sections for smart and sustainable management of urban drainage systems at city scale) through the sub-projects ENGODRAIN (grant number RTI2018-094217-B-C31), MELODRAIN (grant number RTI2018-094217-B-C32) and POREDRAIN (grant number RTI2018-094217-B-C33) funded by Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (AEI) and the European Regional Development Fund (ERDF). The APC was funded by the ENGODRAIN (RTI2018-094217-BC31) project
Design of water reuse storage facilities in Sustainable Urban Drainage Systems from a volumetric water balance perspective
[EN] This paper presents a methodology for designing water reuse storage facilities as part of Sustainable Urban Drainage Systems (SUDS) in urban catchments. The method analyzes the whole water balance of the catchment. The contributions to the balance are irrigation and precipitation; the outlets are evapotranspiration, seepage and discharge to the conventional sewage system. The internal system variations are the volume of water to be locally reutilized and the soil water content variation. A cost function that includes the costs of irrigation, discharge to the conventional sewer system and reuse of water locally is proposed to estimate the optimum volume of water to be reused. This approach for SUDS design goes beyond traditional events-based perspectives oriented to damage prevention. This method conceives stormwater as a resource and seeks its optimal use through the design of SUDS. Several types of urban catchments were studied, and the results show that the proposed methodology can be applied either for simulating SUDS behavior in urban catchments or for estimating the optimum volume of water to be locally reused. (C) 2019 Elsevier B.V. All rights reserved.This research was partially developed within the LIFE CERSUDS project and was financed by the LIFE Programme 2014-2020 of the European Union for the Environment and Climate Action [LIFE15 CCA/ES/000091].Zubelzu, S.; Rodríguez Sinobas, L.; Andrés Doménech, I.; Castillo-Rodríguez, J.; Perales Momparler, S. (2019). Design of water reuse storage facilities in Sustainable Urban Drainage Systems from a volumetric water balance perspective. The Science of The Total Environment. 663:133-143. https://doi.org/10.1016/j.scitotenv.2019.01.342S13314366
The need for municipal action planning against flood risk: the risk-informed journey of the municipality of Oliva (Spain)
[EN] Society demands higher safety levels, including those actions related to urban planning and protection against natural hazards and manmade threats. Therefore, authorities respond to these demands through new regulatory and operational frameworks to cope with existing and future risks. The Spanish regulatory framework regarding flood risk management, based on the European context, defines the required procedures for emergency management, involving all authorities responsable for civil protection and urban planning. This framework requires all municipalities at medium or high flood risk to develop and implement local action plans against flood risk (PAMRI, by its acronym in Spanish), which must include a risk estimation, analysis and evaluation, along with the description of actions for a risk-informed urban planning and emergency management. The City Council of Oliva developed the corresponding plan, approved by the regional government in June 2016, including new aspects such as the figure of the Technical Director, and a comprehensive and quantitative flood risk analysis to support decisionmaking on emergency management and planning.Research activities related to the work described in this article are
part of the INICIA project, “Metodología de evaluación de INversiones
en Infraestructuras del Ciclo Integral del Agua basada en indicadores
de riesgo y de eficiencia energética”, within the framework
of the National Programme for Research Aimed at the Challenges
of Society “Retos 2013”, with reference BIA2013-48157-C2-1-R-AR.Porta-Sancho, JR.; Castillo Rodríguez, JT.; Escuder Bueno, I.; Perales-Momparler, S. (2016). The need for municipal action planning against flood risk: the risk-informed journey of the municipality of Oliva (Spain). VITRUVIO - International Journal of Architectural Technology and Sustainability. 1(2):67-78. https://doi.org/10.4995/vitruvio-ijats.2016.684967781
SuDS efficiency during the start-up period under Mediterranean climatic conditions
[EN] This paper presents the performance of a number of sustainable drainage systems (SuDS)
in the city of Xàtiva in the Valencia Region of Spain relatively soon after their
construction. The systems studied comprise two roadside swales, one detention basin
receiving runoff from one of the swales and one green roof to a school. The SuDS were
installed under an EU LIFEþ project intended to demonstrate their practicability,
application, and behavior under Mediterranean rainfall conditions. Most of the systems
installed were in new developments but the green roof was retrofitted to a school within
Xàtiva, which is a dense urban area. Full flow monitoring was undertaken and spot
samples were taken to give a preliminary assessment of water quality performance. The
early results presented in the paper demonstrate the effectiveness of the systems under
typical Mediterranean conditions, which comprise intense rainfall from September to
December and little or no precipitation at other times of the year. It is concluded that
SuDS can be effectively introduced in the Mediterranean region of Spain.The research described in this paper has been carried out under the Life+ program research project "AQUAVAL Sustainable Urban Water Management Plans, promoting SUDS and considering climate change, in the province of Valencia" (Life08ENV/E/000099), supported by ERDF funding of the European Union.Perales Momparler, S.; Hernández Crespo, C.; Vallés Morán, FJ.; Martín Monerris, M.; Andrés Doménech, I.; Andreu Álvarez, J.; Jefferies, C. (2014). SuDS efficiency during the start-up period under Mediterranean climatic conditions. CLEAN - Soil, Air, Water. 42(2):178-186. doi:10.1002/clen.201300164S178186422Boletin Oficial del Estado 2012Czemiel Berndtsson, J. (2010). Green roof performance towards management of runoff water quantity and quality: A review. Ecological Engineering, 36(4), 351-360. doi:10.1016/j.ecoleng.2009.12.014Davis, A. P., Stagge, J. H., Jamil, E., & Kim, H. (2012). Hydraulic performance of grass swales for managing highway runoff. Water Research, 46(20), 6775-6786. doi:10.1016/j.watres.2011.10.017Casal-Campos, A., Jefferies, C., & Perales Momparler, S. (2012). Selecting SUDS in the Valencia Region of Spain. Water Practice and Technology, 7(1). doi:10.2166/wpt.2012.001Gomez-Ullate, E., Castillo-Lopez, E., Castro-Fresno, D., & Bayon, J. R. (2010). Analysis and Contrast of Different Pervious Pavements for Management of Storm-Water in a Parking Area in Northern Spain. Water Resources Management, 25(6), 1525-1535. doi:10.1007/s11269-010-9758-xCastro-Fresno, D., Andrés-Valeri, V., Sañudo-Fontaneda, L., & Rodriguez-Hernandez, J. (2013). Sustainable Drainage Practices in Spain, Specially Focused on Pervious Pavements. Water, 5(1), 67-93. doi:10.3390/w5010067Rowe, D. B. (2011). Green roofs as a means of pollution abatement. Environmental Pollution, 159(8-9), 2100-2110. doi:10.1016/j.envpol.2010.10.029Deletic, A. (2001). Modelling of water and sediment transport over grassed areas. Journal of Hydrology, 248(1-4), 168-182. doi:10.1016/s0022-1694(01)00403-6Stagge, J. H., Davis, A. P., Jamil, E., & Kim, H. (2012). Performance of grass swales for improving water quality from highway runoff. Water Research, 46(20), 6731-6742. doi:10.1016/j.watres.2012.02.037Kim, L.-H., Zoh, K.-D., Jeong, S., Kayhanian, M., & Stenstrom, M. K. (2006). Estimating Pollutant Mass Accumulation on Highways during Dry Periods. Journal of Environmental Engineering, 132(9), 985-993. doi:10.1061/(asce)0733-9372(2006)132:9(985)Brodie, I. M., & Dunn, P. K. (2010). Commonality of rainfall variables influencing suspended solids concentrations in storm runoff from three different urban impervious surfaces. Journal of Hydrology, 387(3-4), 202-211. doi:10.1016/j.jhydrol.2010.04.008Zuo, X., Fu, D., Li, H., & Singh, R. P. (2011). Distribution Characteristics of Pollutants and Their Mutual Influence in Highway Runoff. CLEAN - Soil, Air, Water, 39(10), 956-963. doi:10.1002/clen.201000422Sansalone, J. J., Koran, J. M., Smithson, J. A., & Buchberger, S. G. (1998). Physical Characteristics of Urban Roadway Solids Transported during Rain Events. Journal of Environmental Engineering, 124(5), 427-440. doi:10.1061/(asce)0733-9372(1998)124:5(427)Sansalone, J. J., & Cristina, C. M. (2004). First Flush Concepts for Suspended and Dissolved Solids in Small Impervious Watersheds. Journal of Environmental Engineering, 130(11), 1301-1314. doi:10.1061/(asce)0733-9372(2004)130:11(1301)BERNDTSSON, J., EMILSSON, T., & BENGTSSON, L. (2006). The influence of extensive vegetated roofs on runoff water quality. Science of The Total Environment, 355(1-3), 48-63. doi:10.1016/j.scitotenv.2005.02.035Vijayaraghavan, K., Joshi, U. M., & Balasubramanian, R. (2012). A field study to evaluate runoff quality from green roofs. Water Research, 46(4), 1337-1345. doi:10.1016/j.watres.2011.12.05
Estrategia de implementación de SUDS a escala local empleando análisis GIS multicriterio. Aplicación práctica al municipio de Granollers (Barcelona)
Los Sistemas Urbanos de Drenaje Sostenible (SUDS) están empezando a constituir herramientas de gestión de las aguas pluviales muy conocidas en España. No obstante, en ocasiones, iniciar su implementación en un municipio puede resultar complicado, tanto por la inexperiencia en la construcción de las técnicas y la falta de criterios de diseño específicos, como por el desconocimiento de las zonas y situaciones donde su aplicación resultaría más aconsejable. En el presente trabajo se analiza la estrategia municipal de drenaje sostenible elaborada por el Ajuntament de Granollers donde, además de proporcionar criterios de diseño adaptados a las caracteristicas particulares del municipio, se realiza un análisis GIS multicriterio para identificar aquellas zonas donde es prioritaria la actuación en el corto plazo, de modo que las inversiones y actuaciones municipales puedan realizarse de un modo coherente y razonado.La redacción del informe Estudio para la mejora de la permeabilidad mediante Soluciones basadas en la Naturaleza como los SUDS, para el municipio de Granollers (Barcelona), ha sido posible gracias a la financiación del programa europeo INTERLACE (International cooperation to restore and connect urban environments in Latin America and Europe)
The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain
[EN] Sustainable drainage systems are an alternative and holistic approach to conventional urban stormwater management that use and enhance natural processes to mimic pre-development hydrology, adding a number of well-recognized, although not so often quantified benefits. However, transitions towards regenerative urban built environments that widely incorporate sustainable drainage systems are "per se" innovative journeys that encounter barriers which include the limited evidence on the performance of these systems which, in many countries, are still unknown to professionals and decision makers. A further important barrier is the frequently poor interaction among stakeholders; key items such as sustainable drainage systems provide collective benefits which also demand collective efforts. With the aim of overcoming such innovation-driven barriers, six showcase projects (including rain gardens acting as infiltration basins, swales and a green roof) to demonstrate the feasibility and suitability of sustainable drainage systems were developed and/or retrofitted in two cities of the Valencian region of Spain as a part of an European project, and their performance was monitored for a year. The data acquired, after being fully analyzed and presented to a group of key regional stakeholders, is proving to be a valuable promoter of the desired transition (for instance in influencing the support to SuDS in recent regional legislation). This paper presents detailed data on how these urban ecological drainage infrastructure elements reduce runoff (peak flows and volumes) and improve its quality, contributing to the goal of healthier and livable cities. The data show that the pilots have good hydraulic performance under a typical Mediterranean climate and also provided water quality benefits. Furthermore, it shows how engagement can contribute to smarter governance in the sense of smoothing the difficulties faced by innovation when being presented, understood, and endorsed by professionals and decision-makers in the field of stormwater management. Finally, activities undertaken in the demonstration sites monitored, show how they have been drivers of innovation and transition towards a new stormwater paradigm in Spain, serving as a reference to other urban areas in the Mediterranean. (C) 2016 Elsevier Ltd. All rights reserved.This research has been conducted as part of the Life+ program project "AQUAVAL: Sustainable Urban Water Management Plans, promoting SUDS and considering climate change, in the province of Valencia" (Life08ENV/E/000099) and the MED program project "E2STORMED: Improvement of energy efficiency in the water cycle by the use of innovative stormwater management in smart Mediterranean cities" (1C-MED12-14), both supported by European Regional Development Fund (ERDF) funding of the European Union.Momparler Perales, S.; Andrés Doménech, I.; Hernández Crespo, C.; Vallés-Morán, FJ.; Martín Monerris, M.; Escuder Bueno, I.; Andreu Álvarez, J. (2017). The role of monitoring sustainable drainage systems for promoting transition towards regenerative urban built environments: a case study in the Valencian region, Spain. Journal of Cleaner Production. 163:113-124. doi:10.1016/j.jclepro.2016.05.153S11312416
Decision Support Tool for energy-efficient, sustainable and integrated urban stormwater management
[EN] The use of Sustainable Drainage Systems (SUDS) to manage urban runoff and contribute to environmental and landscape improvement is now widely known, but its application is still limited in many regions, like in Mediterranean countries. In addition, there is a lack of Decision Support Tools that consider all their benefits in the decision making process in a clear and integrated holistic way.
In this paper, the (ESTORMED)-S-2 Decision Support Tool is presented. This tool analyses the impact of stormwater management in the urban environment and introduces energetic and environmental criteria in the decision making process. Therefore, it aims to fill in the existing "gap" between SuDS manuals and guidelines and regional and local decision makers, since it quantifies SuDS benefits and includes them in the comparison of different stormwater scenarios. Finally, the results of applying this tool to compare drainage infrastructures in a real urban development are described. (C) 2016 Elsevier Ltd. All rights reserved.The E2STORMED project (Reference: 1C-MED12-14), within which the Decision Support Tool described in this paper has been developed, was funded by the MED Programme of the European Union. Authors would also like to express their gratitude to the E2STORMED project partners for their assistance and collaboration in this work.Morales Torres, A.; Escuder Bueno, I.; Andrés Doménech, I.; Perales Momparler, S. (2016). Decision Support Tool for energy-efficient, sustainable and integrated
urban stormwater management. Environmental Modelling & Software. 84:518-528. doi:10.1016/j.envsoft.2016.07.019S5185288
A quantitative flood risk analysis methodology for urban areas with integration of social research data
Risk analysis has become a top priority for authorities
and stakeholders in many European countries, with the
aim of reducing flooding risk, considering the population’s
needs and improving risk awareness. Within this context,
two methodological pieces have been developed in the period
2009–2011 within the SUFRI project (Sustainable Strategies
of Urban Flood Risk Management with non-structural measures
to cope with the residual risk, 2nd ERA-Net CRUE
Funding Initiative). First, the “SUFRI Methodology for pluvial
and river flooding risk assessment in urban areas to inform
decision-making” provides a comprehensive and quantitative
tool for flood risk analysis. Second, the “Methodology
for investigation of risk awareness of the population
concerned” presents the basis to estimate current risk from a
social perspective and identify tendencies in the way floods
are understood by citizens. Outcomes of both methods are
integrated in this paper with the aim of informing decision
making on non-structural protection measures. The results of
two case studies are shown to illustrate practical applications
of this developed approach. The main advantage of applying
the methodology herein presented consists in providing
a quantitative estimation of flooding risk before and after investing
in non-structural risk mitigation measures. It can be
of great interest for decision makers as it provides rational
and solid information.The work described in this paper was supported by the 2nd ERA-Net CRUE Funding Initiative, particularly funded by the Ministry of Science and Innovation of Spain and the Federal Ministry of Agriculture, Forestry, Environment and Water Management of Austria (Department 19B of the Government of Styria, Torrent and Avalanche control).Escuder Bueno, I.; Castillo Rodríguez, JT.; Zechner, S.; Jöbstl, C.; Perales Momparler, S.; Petaccia, G. (2012). A quantitative flood risk analysis methodology for urban areas with integration of social research data. Natural Hazards and Earth System Sciences. 12(9):2843-2863. doi:10.5194/nhess-12-2843-2012S28432863129AEMS: Commonwealth of Australia, Flood Warning, Manual 21, Australian Emergency Manuals Series, ISBN 978-1-921152-17-7, 2009.Australian National Committee on Large Dams (ANCOLD): Incorporated Guidelines on Risk Assessment, October 2003.Ayyub, B. M.: Elicitation of expert opinions for uncertainty and risks, CRC Press, 2001.Baana, P. J. and Klijna, F.: Flood risk perception and implications for flood risk management in the Netherlands, Int. J. River Basin Manage., 2, 113–122, 2004.Bowles, D. S.: ALARP Evaluation-Using Cost Effectiveness and Disproportionality to Justify Risk Reduction, Australian National Commission on Large Dams (ANCOLD) – Bulletin, 127, 89–106, August 2004.Conselleria d'Obres Públiques, Urbanisme i Territori (COPUT): Plan de Acción Territorial de Carácter Sectorial sobre Prevención de Riesgo de Inundación en la Comunidad Valenciana (PATRICOVA), 2002 (in Spanish).CRUE Research Funding Initiative: Synthesis Report No I-2009, Addressing the key findings of research, Risk Assessment and Risk Management: Effectiveness and Efficiency of Non-structural Flood Risk Management Measures, Project Contract No: ERAC-CT-2004-515742, 2009.Cunge, J. A., Holly, F. M., and Vervey, A.: Practical aspects of Computational River Hydraulics, Pitman Publ. Inc, London, 1990.Dawson, W. R.: Generic depth-damage relationships for residential structures with basements, Economic Guidance Memorandum (EGM) 04-01, USACE, 2003.DHS: Estimating Economic Consequences for Dam Failure Scenarios, Dams Sector, US Department of Homeland Security, September 2011, 2011a.DHS: Estimating Loss of Life for Dam Failure Scenarios, Dams Sector, US Department of Homeland Security, September 2011, 2011b.Douben, K. J.: Characteristics of river floods and flooding: a global overview, 1985–2003, Irrigation Drainage, 55, S9–S21, 2006.EC: Directive 2007/60/EC of the European Parliament and of the Council of 23 October 2007 on the assessment and management of flood risks, 2007.EC: Directive 2008/114/EC of the European Parliament and of the Council of 8 December 2008 on the identification and designation of European critical infrastructures and the assessment of the need to improve their protection, 2008.Escuder-Bueno, I., Morales-Torres, A., and Perales-Momparler, S.: Urban Flood Risk Characterization as a tool for planning and managing. Workshop Alexandria, March 2010: Exploration of Tolerable Risk Guidelines for Levee Systems, Washington DC (USA), available at: www.ipresas.upv.es, www.sufri.tugraz.at, 2010.Escuder-Bueno, I., Castillo-Rodríguez, J. T., Perales-Momparler, S., and Morales-Torres, A.: SUFRI methodology for pluvial and river flooding risk assessment in urban areas to inform decision-making, SUFRI project, WP3, final report, July 2011, available at: www.sufri.tugraz.at, 2011a.Escuder-Bueno, I., Castillo-Rodríguez, J. T., Perales-Momparler, S., and Morales-Torres, A.: A complete and quantitative tool for flood risk analysis in urban areas: river and pluvial flooding, Proceedings UFRIM Conference, Graz (Austria), September 2011, 2011b.Gómez, M. and Russo, B.: Criterios de riesgo asociados a escorrentía urbana, Jornadas de Ingeniería del Agua, 2009 (in Spanish).Graham, W. J.: A procedure for estimating loss of life caused by dam failure, DSO-99-06, US Department of Interior, Bureau of Reclamation, 1999.Grossmann, G. and Seiser, T.: Final Report – Survey about risk awareness – SUFRI project, 2011 (unpublished report).IEC/FDIS 31010, ISO International Standard: Risk management – Risk assessment techniques, IEC/FDIS 31010:2009 (E), 2009.International Commission on Large Dams (ICOLD): Risk Assessment in Dam Safety Management: A Reconnaissance of Benefits, Methods and Current Applications, Bulletin130, 2005.Jöbstl, C., Zechner, S., Knoblauch, H., Pohl, R., Bornschein, A., Natale, L., Petaccia, G., Escuder-Bueno, I., Castillo-Rodríguez, J. T., Perales-Momparler, S., Morales-Torres, A., Bateman, A., Medina, V., Díaz, A., Grossmann, G., Kulmhofer, A., and Seiser, T.: SUFRI – Sustainable Strategies of Urban Flood Risk Management with non-structural measures to cope with the residual risk, Final Report, Graz 2011, available at: www.sufri.tugraz.at, 2011.Jonkman, S. N.: Global Perspectives on Loss of Human Life Caused by Floods, Nat. Hazards, 34, 151–175, 2003.Messner, F., Penning-Rowsell, E., Green, C., Meyer, V., Tunstall, S., and van der Veen, A.: FLOODSITE Evaluating flood damages: guidance and recommendations on principles and methods, Report T09-06-01, January 2007.Munger, D. F., Bowles, D. S., Boyer, D. B., Davis, D. W., Margo, D. A., Moser, D. A., Regan, P. J., and Snorteland, N.: Interim tolerable risk guidelines for US Army Corps of Engineers dams. In USSD Workshop on the future of dam safety decision making: combining standards and risk, April 2009.Nanía, L.: Métodos de transformación lluvía-escorrentía y de propagación de caudales, Hidrología superficial y subterránea, Universidad de Granada, 2002 (in Spanish).Parker, D., Tunstall, S., and Wilson, T.: Socio-economic benefits of flood forecasting and warning, Flood Hazard Research Centre, Middlesex University, Queensway, Enfield, EN3 4SF, London, UK, 2005.Penning-Rowsell, E., Floyd, D., Ramsbottom, P., and Surendran, S.: Estimating injury and loss of life in floods: A deterministic framework, Nat. Hazards, 36, 43–64, 2005.Reiter, P.: RESCDAM – Loss of life caused by dam failure, the RESCDAM LOL method and its application to Kyrkosjarvi dam in Seinajoki, Water Consulting Ltd., 2001.Roos, M.: Flood management practice in northern California, Irrigation Drainage, 55, 93–99, 2006.Samuels, P., Klijn, F., and Dijkman J.: An analysis of the current practice of policies on river flood risk management in different countries, Irrigation Drainage, 55, 141–150, 2006.Sayers, P. B., Hall, J. W., and Meadowcroft, I. C.: Towards risk-based flood hazard management in the UK, Proceedings of ICE-Civil Engineering 150 May 2002, 36–42, Paper 12803, 2002.Scawthorn, C., Flores, P.; Blais, N., Seligson, H., Tate, E., Chang, S., Mifflin, E., Thomas, W., Murphy, J., Jones, C., and Lawrence, M.: HAZUS-MH flood loss estimation methodology, II: Damage and Loss Assessment, Nat. Hazards Rev., 7, 72–81, 2006.Schanze, J., Hutter, G., Olfert, A., Penning-Rowsell, E.C., Parker, D., Harries, T., Werritty, A., Nachtnebel, H., Holzmann, H., Neuhold, C., Meyer, V., Kuhlicke, C., Schildt, A., Jessel, B., and Königer, P.: FLOOD-ERA Joint Report, CRUE Research Report No I-1: Systematisation, evaluation and context conditions of structural and non-structural measures for flood risk reduction, Project Contract No: ERAC-CT-2004-515742, 2008.Serrano-Lombillo, A., Escuder-Bueno, I., de Membrillera-Ortuño, M. G., and Altarejos-García, L.: iPresas – Software for risk analysis, 23rd International Congress on Large Dams, Brasilia, 2009.Simonovic, S. P.: Social criteria for evaluation of flood control measures – Winnipeg case study, Urban Water, 1, 167–175, 1999.Témez, J. R.: Extended and Improved Rational method, Highways Administration of Spain, XXIV Congress Madrid Edition, 1991 (in Spanish).US Bureau of Reclamation (USBR): Risk Based Profiling System, Technical Service Center, 2001.Vrijling, J. K.: Probabilistic design of water defence systems in The Netherlands, Reliab. Eng. Syst. Safe., 74, 337–344, 2001.Zechner, S., Jöbstl, C., and Knoblauch, H.: SUFRI Methodology for investigation of risk awareness of the population concerned, SUFRI project, WP4, final report, December 2011