5 research outputs found

    Effects of Aberrant HGF/MET Signalling on Cerebellar Development and Medulloblastoma Pathogenesis

    No full text
    Medulloblastoma is the most common malignant paediatric brain tumour. Similar to other tumours, medulloblastoma pathogenesis involves abnormal regulation of several developmental growth pathways. As my thesis project, I studied the effects of aberrant HGF/MET signalling on medulloblastoma formation in two ways. In my first objective, I investigated the role that mutations play in activated HGF/MET signalling in medulloblastoma by searching for mutations in HGF/MET pathway genes, SPINT1, SPINT2, and MET, within primary medulloblastoma specimens. This screen identified several single nucleotide polymorphisms (SNPs) and two novel variations, one in each SPINT1 and SPINT2 genes. In my second objective, I generated a transgenic mouse model with cerebellar-specific aberrant MET signalling. These mice developed extensive cerebellar abnormalities but formed no tumours. These results indicate that mutations in the HGF/MET pathway components alone are not sufficient to initiate medulloblastoma formation and must coincide with additional genetic insults to promote tumour formation, maintenance, and progression.MAS

    Inhibition of the MET Receptor Tyrosine Kinase as a Novel Therapeutic Strategy in Medulloblastoma123

    Get PDF
    Medulloblastoma is the most common pediatric posterior fossa malignancy, with a 5-year overall survival of only 60% and many survivors experiencing treatment-related morbidity secondary to current therapeutic regimens. With an improved understanding of the molecular basis for this disease, the opportunity to develop novel treatments with more tolerable toxicity profiles that target key molecular pathways, now exists. Recently, the hepatocyte growth factor (HGF)/MET signaling pathway has been implicated in medulloblastoma pathogenesis. Several therapeutic strategies targeting this pathway exist, including small molecule inhibitor therapy against the MET receptor tyrosine kinase. We examined the in vitro efficacy of targeting the MET receptor using the highly specific small molecule inhibitor PHA665752 as a novel treatment strategy in medulloblastoma. MET inhibition using PHA665752 was effective at reducing the proliferative capacity of the D283, ONS76, and MED8A medulloblastoma cell lines as assessed by MTS assay. Furthermore, PHA665752 treatment reduced D283 and ONS76 cell motility and impaired the growth of D283 cells in soft agar. Pretreatment of D283, ONS76, and MED8A cells with PHA665752 blocked exogenous recombinant human HGF-induced up-regulation of the downstream RAS/mitogen-activated protein kinase signaling pathway in D283, ONS76 and MED8A cell lines. Similarly, PHA665752 prevented HGF-induced phosphatidylinositol 3-kinase/AKT signaling in ONS76 and MED8A cells. These results highlight the efficacy of targeting the MET receptor tyrosine kinase therapeutically in medulloblastoma and provide support for further preclinical testing of small molecule inhibitors targeting the MET receptor in medulloblastoma
    corecore