18 research outputs found

    Multicenter clinical evaluation of alinity m HBV assay performance

    No full text
    International audienceBackground: Accurate molecular methods to detect and quantify hepatitis B virus (HBV) DNA are essential to diagnose chronic infections, guide treatment decisions, assess response to treatment, and determine risk of HBV-related complications. New generations of real-time HBV DNA assay platforms provide results in less than 2-3 h, with continuous loading of specimens and true random-access capability.Objectives: We examined the clinical performance of the new Alinity m HBV assay, run on the fully automated, continuous, random-access Alinity m platform, to accurately detect and quantify HBV DNA in a large series of patient samples infected with different HBV genotypes frequently encountered in clinical practice.Study design: This international, multisite study assessed the precision and reproducibility of the Alinity m HBV assay and compared its performance to four HBV assays currently in clinical use.Results: The Alinity m HBV assay demonstrated linear quantitation of HBV DNA in plasma samples, with high precision (coefficient of variation 4.1 %-8.8 %) and reproducibility. The Alinity m HBV assay showed excellent correlation (correlation coefficients ≄0.947) with comparator HBV assays, with an overall observed bias ranging from -0.07 to 0.17 Log10 IU/mL. 97 % of quantifiable patient results were <1 Log10 IU/mL different than the respective comparator assays, with comparable results across HBV genotypes.Conclusions: The newly developed real-time PCR-based Alinity m HBV assay is sensitive, reproducible, and accurately quantifies HBV DNA levels from HBsAg-positive patients across the full dynamic range of quantification

    Multicenter clinical evaluation of alinity m HCV assay performance

    No full text
    International audienceBackground: Nucleic acid testing is essential for the detection and quantification of HCV RNA in the diagnosis of HCV infection and treatment monitoring. The Alinity m HCV assay was recently developed by Abbott Molecular for rapid detection and quantification of HCV RNA on the fully automated, continuous, random-access Alinity m analyzer.Objectives: Our study assessed the performance of the new Alinity m HCV assay for detection and quantification of HCV RNA in a large series of patient samples of various genotypes. This international, multicentric study evaluated the linearity, precision, and reproducibility of the Alinity m HCV assay and its performance in comparison to three other HCV assays currently used in clinical practice.Results: The Alinity m HCV assay demonstrated high linearity (correlation coefficient r = 1.00), precision (coefficients of variation [CV] 6.6-13.5 %) and reproducibility (CV 1.7-4.3 % across three control lots). At a concentration near the lower limit of detection, the Alinity m HCV assay exhibited >98 % detectability. The Alinity m HCV assay showed excellent correlation with comparator HCV assays in serum (n = 406) and plasma (n = 1401) samples (correlation coefficients ≄0.96, bias 0.01 to 0.14 Log10 IU/mL). More than 95 % of the quantified results with the Alinity m HCV assay were less than mean bias ± 1.96 SD different from those of the comparator assays.Conclusions: The newly developed Alinity m HCV assay is sensitive, reproducible, and accurately quantifies HCV RNA levels in serum and plasma samples from patients with chronic HCV infection, with no impact of HCV genotype on assay performance

    Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection

    Full text link
    [EN] The development of new detection systems for an accurate and rapid identification of pathogens has become an essential challenge in the biomedical field. Herein a highly selective platform based on aptamer-gated nano materials for specific Staphylococcus aureus detection is presented. In the proposed design, a nanoporous anodic alumina (NAA) scaffold is loaded with the fluorescent indicator rhodamine B, while pores entrances are capped by a DNA aptamer which selectively recognizes S. aureus cells in less than 1 h. When S. aureus cells are present, the solid is selectively uncapped, and the dye is released to the medium. This nanodevice allows the detection of bacterial concentrations between 2 and 5 CFU mL-1 (in buffer and blood, respectively) and it has demonstrated excellent behavior in terms of specificity and robustness. A set of 25 different clinical samples are analyzed using this simple procedure obtaining excellent results, which agree with conventional hospital reference techniques for the identification of S. aureus. This new method is sensitive, rapid and low cost, and avoids steps such as polymerase chain amplification reaction, which makes it suitable for use in point-of-care detection systems.This study was supported by the Spanish Government (projects RTI2018-100910-B-C41 and SAF2017-82251-R (MCUI/AEI/FEDER, UE)), the Generalitat Valenciana (project PROMETEO/2018/024), the Universitat Politecnica de Valencia-Instituto de Investigacion Sanitaria La Fe (B02-MIRSA project) and CIBER-BBN (NANOPATH and valorization project CANDI-EYE). It has been also co-financed by the EU through the Valencian Community ERDF PO 2014-2020. S.S. thanks the Instituto de Salud Carlos III and the European Social Fund for the financial support "Sara Borrell" (CD16/000237). L.P. thanks to Ministerio de Economia, Industria y Competitividad for his FPI grant. The authors are grateful for the professional English language editing to Mr. Arash Javadinejad, English Instructor and pubication Editor at the Instituto de Investigacion Sanitaria La Fe, Valencia, Spain.Pla, L.; Santiago Felipe, S.; Tormo-Mas, MÁ.; PemĂĄn, J.; SancenĂłn Galarza, F.; Aznar, E.; MartĂ­nez-Måñez, R. (2020). Aptamer-Capped nanoporous anodic alumina for Staphylococcus aureus detection. Sensors and Actuators B Chemical. 320(128281). https://doi.org/10.1016/j.snb.2020.128281S320128281Lai, H.-Z., Wang, S.-G., Wu, C.-Y., & Chen, Y.-C. (2015). Detection of Staphylococcus aureus by Functional Gold Nanoparticle-Based Affinity Surface-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry, 87(4), 2114-2120. doi:10.1021/ac503097vCheng, J.-C., Huang, C.-L., Lin, C.-C., Chen, C.-C., Chang, Y.-C., Chang, S.-S., & Tseng, C.-P. (2006). Rapid Detection and Identification of Clinically Important Bacteria by High-Resolution Melting Analysis after Broad-Range Ribosomal RNA Real-Time PCR. Clinical Chemistry, 52(11), 1997-2004. doi:10.1373/clinchem.2006.069286Moore, D. F., & Curry, J. I. (1998). Detection and Identification of Mycobacterium tuberculosis Directly from Sputum Sediments by Ligase Chain Reaction. Journal of Clinical Microbiology, 36(4), 1028-1031. doi:10.1128/jcm.36.4.1028-1031.1998CHANG, T. C., & HUANG, S. H. (1994). An Enzyme-Linked Immunosorbent Assay for the Rapid Detection of Staphylococcus aureus in Processed Foods. Journal of Food Protection, 57(3), 184-189. doi:10.4315/0362-028x-57.3.184Vigneshvar, S., Sudhakumari, C. C., Senthilkumaran, B., & Prakash, H. (2016). Recent Advances in Biosensor Technology for Potential Applications – An Overview. Frontiers in Bioengineering and Biotechnology, 4. doi:10.3389/fbioe.2016.00011Abbaspour, A., Norouz-Sarvestani, F., Noori, A., & Soltani, N. (2015). Aptamer-conjugated silver nanoparticles for electrochemical dual-aptamer-based sandwich detection of staphylococcus aureus. Biosensors and Bioelectronics, 68, 149-155. doi:10.1016/j.bios.2014.12.040Wang, J., Wu, X., Wang, C., Shao, N., Dong, P., Xiao, R., & Wang, S. (2015). Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Applied Materials & Interfaces, 7(37), 20919-20929. doi:10.1021/acsami.5b06446Felix, F. S., & Angnes, L. (2018). Electrochemical immunosensors – A powerful tool for analytical applications. Biosensors and Bioelectronics, 102, 470-478. doi:10.1016/j.bios.2017.11.029Luppa, P. B., Sokoll, L. J., & Chan, D. W. (2001). Immunosensors—principles and applications to clinical chemistry. Clinica Chimica Acta, 314(1-2), 1-26. doi:10.1016/s0009-8981(01)00629-5Lim, Y. C., Kouzani, A. Z., & Duan, W. (2010). Aptasensors: A Review. Journal of Biomedical Nanotechnology, 6(2), 93-105. doi:10.1166/jbn.2010.1103Feng, C., Dai, S., & Wang, L. (2014). Optical aptasensors for quantitative detection of small biomolecules: A review. Biosensors and Bioelectronics, 59, 64-74. doi:10.1016/j.bios.2014.03.014O’Sullivan, C. K. (2001). Aptasensors – the future of biosensing? Analytical and Bioanalytical Chemistry, 372(1), 44-48. doi:10.1007/s00216-001-1189-3Leca‐Bouvier, B., & Blum, L. J. (2005). Biosensors for Protein Detection: A Review. Analytical Letters, 38(10), 1491-1517. doi:10.1081/al-200065780Aznar, E., Oroval, M., Pascual, L., MurguĂ­a, J. R., MartĂ­nez-Måñez, R., & SancenĂłn, F. (2016). Gated Materials for On-Command Release of Guest Molecules. Chemical Reviews, 116(2), 561-718. doi:10.1021/acs.chemrev.5b00456SancenĂłn, F., Pascual, L., Oroval, M., Aznar, E., & MartĂ­nez-Måñez, R. (2015). Gated Silica Mesoporous Materials in Sensing Applications. ChemistryOpen, 4(4), 418-437. doi:10.1002/open.201500053Zelada-GuillĂ©n, G. A., SebastiĂĄn-Avila, J. L., Blondeau, P., Riu, J., & Rius, F. X. (2012). Label-free detection of Staphylococcus aureus in skin using real-time potentiometric biosensors based on carbon nanotubes and aptamers. Biosensors and Bioelectronics, 31(1), 226-232. doi:10.1016/j.bios.2011.10.021Castillo, R. R., Baeza, A., & Vallet-RegĂ­, M. (2017). Recent applications of the combination of mesoporous silica nanoparticles with nucleic acids: development of bioresponsive devices, carriers and sensors. Biomaterials Science, 5(3), 353-377. doi:10.1039/c6bm00872kKurt, H., YĂŒce, M., Hussain, B., & Budak, H. (2016). Dual-excitation upconverting nanoparticle and quantum dot aptasensor for multiplexed food pathogen detection. Biosensors and Bioelectronics, 81, 280-286. doi:10.1016/j.bios.2016.03.005Chang, Y.-C., Yang, C.-Y., Sun, R.-L., Cheng, Y.-F., Kao, W.-C., & Yang, P.-C. (2013). Rapid single cell detection of Staphylococcus aureus by aptamer-conjugated gold nanoparticles. Scientific Reports, 3(1). doi:10.1038/srep01863Borsa, B. A., Tuna, B. G., Hernandez, F. J., Hernandez, L. I., Bayramoglu, G., Arica, M. Y., & Ozalp, V. C. (2016). Staphylococcus aureus detection in blood samples by silica nanoparticle-oligonucleotides conjugates. Biosensors and Bioelectronics, 86, 27-32. doi:10.1016/j.bios.2016.06.023Otri, I., El Sayed, S., Medaglia, S., MartĂ­nez‐Måñez, R., Aznar, E., & SancenĂłn, F. (2019). Simple Endotoxin Detection Using Polymyxin‐B‐Gated Nanoparticles. Chemistry – A European Journal, 25(15), 3770-3774. doi:10.1002/chem.201806306Pascual, L., Baroja, I., Aznar, E., SancenĂłn, F., Marcos, M. D., MurguĂ­a, J. R., 
 MartĂ­nez-Måñez, R. (2015). Oligonucleotide-capped mesoporous silica nanoparticles as DNA-responsive dye delivery systems for genomic DNA detection. Chemical Communications, 51(8), 1414-1416. doi:10.1039/c4cc08306gRibes, À., Santiago-Felipe, S., Bernardos, A., Marcos, M. D., Pardo, T., SancenĂłn, F., 
 Aznar, E. (2017). Two New Fluorogenic Aptasensors Based on Capped Mesoporous Silica Nanoparticles to Detect Ochratoxin A. ChemistryOpen, 6(5), 653-659. doi:10.1002/open.201700106Chen, Y., Santos, A., Wang, Y., Kumeria, T., Li, J., Wang, C., & Losic, D. (2015). Biomimetic Nanoporous Anodic Alumina Distributed Bragg Reflectors in the Form of Films and Microsized Particles for Sensing Applications. ACS Applied Materials & Interfaces, 7(35), 19816-19824. doi:10.1021/acsami.5b05904De la Escosura-Muñiz, A., & Merkoçi, A. (2012). Nanochannels Preparation and Application in Biosensing. ACS Nano, 6(9), 7556-7583. doi:10.1021/nn301368zBaranowska, M., Slota, A. J., Eravuchira, P. J., Macias, G., XifrĂ©-PĂ©rez, E., Pallares, J., 
 Marsal, L. F. (2014). Protein attachment to nanoporous anodic alumina for biotechnological applications: Influence of pore size, protein size and functionalization path. Colloids and Surfaces B: Biointerfaces, 122, 375-383. doi:10.1016/j.colsurfb.2014.07.027Ribes, À., XifrĂ© -PĂ©rez, E., Aznar, E., SancenĂłn, F., Pardo, T., Marsal, L. F., & MartĂ­nez-Måñez, R. (2016). Molecular gated nanoporous anodic alumina for the detection of cocaine. Scientific Reports, 6(1). doi:10.1038/srep38649Pla, L., XifrĂ©-PĂ©rez, E., Ribes, À., Aznar, E., Marcos, M. D., Marsal, L. F., 
 SancenĂłn, F. (2017). A Mycoplasma Genomic DNA Probe using Gated Nanoporous Anodic Alumina. ChemPlusChem, 82(3), 337-341. doi:10.1002/cplu.201600651Ribes, À., Aznar, E., Santiago-Felipe, S., Xifre-Perez, E., Tormo-Mas, M. Á., PemĂĄn, J., 
 MartĂ­nez-Måñez, R. (2019). Selective and Sensitive Probe Based in Oligonucleotide-Capped Nanoporous Alumina for the Rapid Screening of Infection Produced by Candida albicans. ACS Sensors, 4(5), 1291-1298. doi:10.1021/acssensors.9b00169Kreiswirth, B. N., Löfdahl, S., Betley, M. J., O’Reilly, M., Schlievert, P. M., Bergdoll, M. S., & Novick, R. P. (1983). The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature, 305(5936), 709-712. doi:10.1038/305709a0Christensen, G. D., Simpson, W. A., Bisno, A. L., & Beachey, E. H. (1982). Adherence of slime-producing strains of Staphylococcus epidermidis to smooth surfaces. Infection and Immunity, 37(1), 318-326. doi:10.1128/iai.37.1.318-326.1982Wagner, E., Doskar, J., & Götz, F. (1998). Physical and genetic map of the genome of Staphylococcus carnosus TM300. Microbiology, 144(2), 509-517. doi:10.1099/00221287-144-2-509Tormo, M. Á., Knecht, E., Götz, F., Lasa, I., & PenadĂ©s, J. R. (2005). Bap-dependent biofilm formation by pathogenic species of Staphylococcus: evidence of horizontal gene transfer? Microbiology, 151(7), 2465-2475. doi:10.1099/mic.0.27865-0Oliveira, K., Procop, G. W., Wilson, D., Coull, J., & Stender, H. (2002). Rapid Identification of Staphylococcus aureus Directly from Blood Cultures by Fluorescence In Situ Hybridization with Peptide Nucleic Acid Probes. Journal of Clinical Microbiology, 40(1), 247-251. doi:10.1128/jcm.40.1.247-251.2002Marlowe, E. M., & Bankowski, M. J. (2011). Conventional and Molecular Methods for the Detection of Methicillin-Resistant Staphylococcus aureus. Journal of Clinical Microbiology, 49(9_Supplement). doi:10.1128/jcm.00791-11Huang, S.-H., & Chang, T.-C. (2004). Detection of Staphylococcus aureus by a Sensitive Immuno-PCR Assay. Clinical Chemistry, 50(9), 1673-1674. doi:10.1373/clinchem.2004.033548Burghardt, E. L., Flenker, K. S., Clark, K. C., Miguel, J., Ince, D., Winokur, P., 
 McNamara, J. O. (2016). Rapid, Culture-Free Detection of Staphylococcus aureus Bacteremia. PLOS ONE, 11(6), e0157234. doi:10.1371/journal.pone.015723

    U.S. Department of Energy Solar Decathlon Design and Build Challenge Spring 2022

    No full text
    Located in Muncie, Indiana, Ball State prides itself on being a student-centered, community- engaged, and sustainability focused public research university. Ball State transforms entrepreneurial learners into impactful leaders committed to improving the quality of life for all. Ball State’s innovative commitment to sustainability has fueled the creation of the nation’s largest ground source, closed-loop district heating/cooling system, benefiting the University financially and the environment positively. As the campus continues to expand, all new construction is required to be LEED certified. Each year, Ball State initiates a diverse range of immersive learning projects that engage students with organizational partners and residents throughout the local community. This is an Exhibit celebrating the hard work that students, faculty, industry partners, and volunteers have put into this competition. Help us celebrate the Office Building Design team, Education Building Design team and Build Challenge team
    corecore