51 research outputs found

    Comparative analysis of tissue-specific transcriptomes in the funnel-web spider Macrothele calpeiana (Araneae, Hexathelidae)

    Get PDF
    Altres ajuts: Beatriu de Pinós (Generalitat de Catalunya, 2010BP-A 00438 i 2010BP-B 00175)The funnel-web spider Macrothele calpeiana is a charismatic Mygalomorph with a great interest in basic, applied and translational research. Nevertheless, current scarcity of genomic and transcriptomic data of this species clearly limits the research in this non-model organism. To overcome this limitation, we launched the first tissue-specific enriched RNA-seq analysis in this species using a subtractive hybridization approach, with two main objectives, to characterize the specific transcriptome of the putative chemosensory appendages (palps and first pair of legs), and to provide a new set of DNA markers for further phylogenetic studies. We have characterized the set of transcripts specifically expressed in putative chemosensory tissues of this species, much of them showing features shared by chemosensory system genes. Among specific candidates, we have identified some members of the iGluR and NPC2 families. Moreover, we have demonstrated the utility of these newly generated data as molecular markers by inferring the phylogenetic position M. calpeina in the phylogenetic tree of Mygalomorphs. Our results provide novel resources for researchers interested in spider molecular biology and systematics, which can help to expand our knowledge on the evolutionary processes underlying fundamental biological questions, as species invasion or biodiversity origin and maintenance

    DnaSP 6 : DNA sequence polymorphism analysis of large data sets

    Get PDF
    We present version 6 of the DnaSP (DNA Sequence Polymorphism) software, a new version of the popular tool for performing exhaustive population genetic analyses on multiple sequence alignments. This major upgrade incorporates novel functionalities to analyse large datasets, such as those generated by high-throughput sequencing (HTS) technologies. Among other features, DnaSP 6 implements: i) modules for reading and analysing data from genomic partitioning methods, such as RADseq or hybrid enrichment approaches, ii) faster methods scalable for HTS data, and iii) summary statistics for the analysis of multi-locus population genetics data. Furthermore, DnaSP 6 includes novel modules to perform single- and multi-locus coalescent simulations under a wide range of demographic scenarios. The DnaSP 6 program, with extensive documentation, is freely available at http://www.ub.edu/dnasp

    Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.

    Get PDF
    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events

    Porcine Y-chromosome variation is consistent with the occurrence of paternal gene flow from non-Asian to Asian populations

    Get PDF
    Altres ajuts: CERCA Programme/Generalitat de Catalunya.Pigs (Sus scrofa) originated in Southeast Asia and expanded to Europe and North Africa approximately 1 MYA. Analyses of porcine Y-chromosome variation have shown the existence of two main haplogroups that are highly divergent, a result that is consistent with previous mitochondrial and autosomal data showing that the Asian and non-Asian pig populations remained geographically isolated until recently. Paradoxically, one of these Y-chromosome haplogroups is extensively shared by pigs and wild boars from Asia and Europe, an observation that is difficult to reconcile with a scenario of prolonged geographic isolation. To shed light on this issue, we genotyped 33 Y-linked SNPs and one indel in a worldwide sample of pigs and wild boars and sequenced a total of 9903 nucleotide sites from seven loci distributed along the Y-chromosome. Notably, the nucleotide diversity per site at the Y-linked loci (0.0015 in Asian pigs) displayed the same order of magnitude as that described for autosomal loci (~0.0023), a finding compatible with a process of sustained and intense isolation. We performed an approximate Bayesian computation analysis focused on the paternal diversity of wild boars and local pig breeds in which we compared three demographic models: two isolation models (I models) differing in the time of isolation and a model of isolation with recent unidirectional migration (IM model). Our results suggest that the most likely explanation for the extensive sharing of one Y-chromosome haplogroup between non-Asian and Asian populations is a recent and unidirectional (non-Asian > Asian) paternal migration event

    Corrigendum to: Drosophila Evolution over Space and Time (DEST): a New Population Genomics Resource

    Get PDF
    Drosophila melanogaster is a leading model in population genetics and genomics, and a growing number of whole-genome datasets from natural populations of this species have been published over the last years. A major challenge is the integration of disparate datasets, often generated using different sequencing technologies and bioinformatic pipelines, which hampers our ability to address questions about the evolution of this species. Here we address these issues by developing a bioinformatics pipeline that maps pooled sequencing (Pool-Seq) reads from D. melanogaster to a hologenome consisting of fly and symbiont genomes and estimates allele frequencies using either a heuristic (PoolSNP) or a probabilistic variant caller (SNAPE-pooled). We use this pipeline to generate the largest data repository of genomic data available for D. melanogaster to date, encompassing 271 previously published and unpublished population samples from over 100 locations in > 20 countries on four continents. Several of these locations have been sampled at different seasons across multiple years. This dataset, which we call Drosophila Evolution over Space and Time (DEST), is coupled with sampling and environmental meta-data. A web-based genome browser and web portal provide easy access to the SNP dataset. We further provide guidelines on how to use Pool-Seq data for model-based demographic inference. Our aim is to provide this scalable platform as a community resource which can be easily extended via future efforts for an even more extensive cosmopolitan dataset. Our resource will enable population geneticists to analyze spatio-temporal genetic patterns and evolutionary dynamics of D. melanogaster populations in unprecedented detail.DrosEU is funded by a Special Topic Networks (STN) grant from the European Society for Evolutionary Biology (ESEB). MK (M. Kapun) was supported by the Austrian Science Foundation (grant no. FWF P32275); JG by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900) and by the Spanish Ministry of Science and Innovation (BFU-2011-24397); TF by the Swiss National Science Foundation (SNSF grants PP00P3_133641, PP00P3_165836, and 31003A_182262) and a Mercator Fellowship from the German Research Foundation (DFG), held as a EvoPAD Visiting Professor at the Institute for Evolution and Biodiversity, University of Münster; AOB by the National Institutes of Health (R35 GM119686); MK (M. Kankare) by Academy of Finland grant 322980; VL by Danish Natural Science Research Council (FNU) grant 4002-00113B; FS Deutsche Forschungsgemeinschaft (DFG) grant STA1154/4-1, Project 408908608; JP by the Deutsche Forschungsgemeinschaft Projects 274388701 and 347368302; AU by FPI fellowship (BES-2012-052999); ET Israel Science Foundation (ISF) grant 1737/17; MSV, MSR and MJ by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200178); AP, KE and MT by a grant from the Ministry of Education, Science and Technological Development of the Republic of Serbia (451-03-68/2020-14/200007); and TM NSERC grant RGPIN-2018-05551.Peer reviewe

    Evolutionary insights from large scale resequencing datasets in Drosophila melanogaster

    No full text
    Drosophila melanogaster has long been used as an evolutionary model system. Its small genome size, well-annotated genome, and ease of sampling, also makes it a choice species for genome resequencing studies. Hundreds of genomic samples from populations worldwide are available and are currently being used to tackle a wide range of evolutionary questions. In this review, we focused on three insights that have increased our understanding of the evolutionary history of this species, and that have implications for the study of evolutionary processes in other species as well. Because of technical limitations, most of the studies so far have focused on SNP variants. However, long-read sequencing techniques should allow us in the near future to include other type of genomic variants that also influence genome evolution.JG is funded by the European Commission (H2020-ERC-2014-CoG-647900).Peer reviewe

    Benchmarking the performance of Pool-seq SNP callers using simulated and real sequencing data

    No full text
    Population genomics is a fast-developing discipline with promising applications in a growing number of life sciences fields. Advances in sequencing technologies and bioinformatics tools allow population genomics to exploit genome-wide information to identify the molecular variants underlying traits of interest and the evolutionary forces that modulate these variants through space and time. However, the cost of genomic analyses of multiple populations is still too high to address them through individual genome sequencing. Pooling individuals for sequencing can be a more effective strategy in Single Nucleotide Polymorphism (SNP) detection and allele frequency estimation because of a higher total coverage. However, compared to individual sequencing, SNP calling from pools has the additional difficulty of distinguishing rare variants from sequencing errors, which is often avoided by establishing a minimum threshold allele frequency for the analysis. Finding an optimal balance between minimizing information loss and reducing sequencing costs is essential to ensure the success of population genomics studies. Here, we have benchmarked the performance of SNP callers for Pool-seq data, based on different approaches, under different conditions, and using computer simulations and real data. We found that SNP callers performance varied for allele frequencies up to 0.35. We also found that SNP callers based on Bayesian (SNAPE-pooled) or maximum likelihood (MAPGD) approaches outperform the two heuristic callers tested (VarScan and PoolSNP), in terms of the balance between sensitivity and FDR both in simulated and sequencing data. Our results will help inform the selection of the most appropriate SNP caller not only for large-scale population studies but also in cases where the Pool-seq strategy is the only option, such as in metagenomic or polyploid studies.This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (H2020-ERC-2014-CoG-647900).Peer reviewe

    Patterns of nucleotide diversity at the regions encompassing the Drosophila insulin-like peptide (dilp) genes: demography vs positive selection in Drosophila melanogaster.

    No full text
    In Drosophila, the insulin-signaling pathway controls some life history traits, such as fertility and lifespan, and it is considered to be the main metabolic pathway involved in establishing adult body size. Several observations concerning variation in body size in the Drosophila genus are suggestive of its adaptive character. Genes encoding proteins in this pathway are, therefore, good candidates to have experienced adaptive changes and to reveal the footprint of positive selection. The Drosophila insulin-like peptides (DILPs) are the ligands that trigger the insulin-signaling cascade. In Drosophila melanogaster, there are several peptides that are structurally similar to the single mammalian insulin peptide. The footprint of recent adaptive changes on nucleotide variation can be unveiled through the analysis of polymorphism and divergence. With this aim, we have surveyed nucleotide sequence variation at the dilp1-7 genes in a natural population of D. melanogaster. The comparison of polymorphism in D. melanogaster and divergence from D. simulans at different functional classes of the dilp genes provided no evidence of adaptive protein evolution after the split of the D. melanogaster and D. simulans lineages. However, our survey of polymorphism at the dilp gene regions of D. melanogaster has provided some evidence for the action of positive selection at or near these genes. The regions encompassing the dilp1-4 genes and the dilp6 gene stand out as likely affected by recent adaptive events

    Nucleotide polymorphism and divergence at the four <i>dilp</i> gene regions.

    No full text
    1<p>Sample size was 12 for all regions except <i>dilp1-4</i> (10).</p>2<p>The sequenced region consist of two fragments separated by a ∼390-bp stretch located at the first intron of the <i>dilp6</i> gene.</p>3<p>Silent refers to variation at non-coding sites and at synonymous sites of coding regions.</p><p><i>S</i>, number of segregating sites (number of singletons in parentheses); <i>π</i>, nucleotide diversity; <i>h</i>, number of haplotypes; <i>Hd</i>, haplotype diversity; <i>K</i>, nucleotide divergence.</p
    • …
    corecore