60 research outputs found

    Is it time to change the reference genome?

    Get PDF
    The use of the human reference genome has shaped methods and data across modern genomics. This has offered many benefits while creating a few constraints. In the following opinion, we outline the history, properties, and pitfalls of the current human reference genome. In a few illustrative analyses, we focus on its use for variant-calling, highlighting its nearness to a 'type specimen'. We suggest that switching to a consensus reference would offer important advantages over the continued use of the current reference with few disadvantages

    Pan-human consensus genome significantly improves the accuracy of RNA-seq analyses

    Get PDF
    The Human Reference Genome serves as the foundation for modern genomic analyses. However, in its present form, it does not adequately represent the vast genetic diversity of the human population. In this study, we explored the consensus genome as a potential successor of the current reference genome and assessed its effect on the accuracy of RNA-seq read alignment. In order to find the best haploid genome representation, we constructed consensus genomes at the pan-human, super-population, and population levels, utilizing variant information from the 1000 Genomes Project. Using personal haploid genomes as the ground truth, we compared mapping errors for real RNA-seq reads aligned to the consensus genomes versus the reference genome. For reads overlapping homozygous variants, we found that the mapping error decreased by a factor of ~2-3 when the reference was replaced with the pan-human consensus genome. We also found that using more population-specific consensuses resulted in little to no increase overusing the pan-human consensus, suggesting a limit in the utility of incorporating more specific genomic variation. Replacing reference with consensus genomes impacts functional analyses, such as differential expressions of isoforms, genes, and splice junctions

    Comparison of automated candidate gene prediction systems using genes implicated in type 2 diabetes by genome-wide association studies

    Get PDF
    BackgroundAutomated candidate gene prediction systems allow geneticists to hone in on disease genes more rapidly by identifying the most probable candidate genes linked to the disease phenotypes under investigation. Here we assessed the ability of eight different candidate gene prediction systems to predict disease genes in intervals previously associated with type 2 diabetes by benchmarking their performance against genes implicated by recent genome-wide association studies.ResultsUsing a search space of 9556 genes, all but one of the systems pruned the genome in favour of genes associated with moderate to highly significant SNPs. Of the 11 genes associated with highly significant SNPs identified by the genome-wide association studies, eight were flagged as likely candidates by at least one of the prediction systems. A list of candidates produced by a previous consensus approach did not match any of the genes implicated by 706 moderate to highly significant SNPs flagged by the genome-wide association studies. We prioritized genes associated with medium significance SNPs.ConclusionThe study appraises the relative success of several candidate gene prediction systems against independent genetic data. Even when confronted with challengingly large intervals, the candidate gene prediction systems can successfully select likely disease genes. Furthermore, they can be used to filter statistically less-well-supported genetic data to select more likely candidates. We suggest consensus approaches fail because they penalize novel predictions made from independent underlying databases. To realize their full potential further work needs to be done on prioritization and annotation of genes.<br /

    Cross-tissue analysis of allelic X-chromosome inactivation ratios resolves features of human development

    Get PDF
    X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features of XCI to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is completed prior to tissue specification and at a time when 6-16 cells are fated for all tissue lineages. Additionally, we exploit tissue specific variability to characterize the number of cells present at the time of each tissue’s lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating variance of XCI ratios using adult tissue, we resolve key features of human development otherwise difficult to ascertain experimentally and develop scalable methods easily applicable to future data

    Variability of cross-tissue X-chromosome inactivation characterizes timing of human embryonic lineage specification events

    Get PDF
    X-chromosome inactivation (XCI) is a random, permanent, and developmentally early epigenetic event that occurs during mammalian embryogenesis. We harness these features to investigate characteristics of early lineage specification events during human development. We initially assess the consistency of X-inactivation and establish a robust set of XCI-escape genes. By analyzing variance in XCI ratios across tissues and individuals, we find that XCI is shared across all tissues, suggesting that XCI is completed in the epiblast (in at least 6-16 cells) prior to specification of the germ layers. Additionally, we exploit tissue-specific variability to characterize the number of cells present during tissue-lineage commitment, ranging from approximately 20 cells in liver and whole blood tissues to 80 cells in brain tissues. By investigating the variability of XCI ratios using adult tissue, we characterize embryonic features of human XCI and lineage specification that are otherwise difficult to ascertain experimentally

    CoCoCoNet: Conserved and Comparative Co-expression Across a Diverse Set of Species

    Get PDF
    ABSTRACT Co-expression analysis has provided insight into gene function in organisms from Arabidopsis to Zebrafish. Comparison across species has the potential to enrich these results, for example by prioritizing among candidate human disease genes based on their network properties, or by finding alternative model systems where their co-expression is conserved. Here, we present CoCoCoNet as a tool for identifying co nserved gene modules and co mparing co -expression net works. CoCoCoNet is a resource for both data and methods, providing gold-standard networks and sophisticated tools for on-the-fly comparative analyses across 14 species. We show how CoCoCoNet can be used in two use cases. In the first, we demonstrate deep conservation of a nucleolus gene module across very divergent organisms, and in the second, we show how the heterogeneity of autism mechanisms in humans can be broken down by functional groups, and translated to model organisms. CoCoCoNet is free to use and available to all at https://milton.cshl.edu/CoCoCoNet , with data and R scripts available at ftp://milton.cshl.edu/data

    Gentrepid V2.0: a web server for candidate disease gene prediction

    Get PDF
    Contains fulltext : 124935.pdf (publisher's version ) (Open Access)BACKGROUND: Candidate disease gene prediction is a rapidly developing area of bioinformatics research with the potential to deliver great benefits to human health. As experimental studies detecting associations between genetic intervals and disease proliferate, better bioinformatic techniques that can expand and exploit the data are required. DESCRIPTION: Gentrepid is a web resource which predicts and prioritizes candidate disease genes for both Mendelian and complex diseases. The system can take input from linkage analysis of single genetic intervals or multiple marker loci from genome-wide association studies. The underlying database of the Gentrepid tool sources data from numerous gene and protein resources, taking advantage of the wealth of biological information available. Using known disease gene information from OMIM, the system predicts and prioritizes disease gene candidates that participate in the same protein pathways or share similar protein domains. Alternatively, using an ab initio approach, the system can detect enrichment of these protein annotations without prior knowledge of the phenotype. CONCLUSIONS: The system aims to integrate the wealth of protein information currently available with known and novel phenotype/genotype information to acquire knowledge of biological mechanisms underpinning disease. We have updated the system to facilitate analysis of GWAS data and the study of complex diseases. Application of the system to GWAS data on hypertension using the ICBP data is provided as an example. An interesting prediction is a ZIP transporter additional to the one found by the ICBP analysis. The webserver URL is https://www.gentrepid.org/

    Conditions for the Evolution of Gene Clusters in Bacterial Genomes

    Get PDF
    Genes encoding proteins in a common pathway are often found near each other along bacterial chromosomes. Several explanations have been proposed to account for the evolution of these structures. For instance, natural selection may directly favour gene clusters through a variety of mechanisms, such as increased efficiency of coregulation. An alternative and controversial hypothesis is the selfish operon model, which asserts that clustered arrangements of genes are more easily transferred to other species, thus improving the prospects for survival of the cluster. According to another hypothesis (the persistence model), genes that are in close proximity are less likely to be disrupted by deletions. Here we develop computational models to study the conditions under which gene clusters can evolve and persist. First, we examine the selfish operon model by re-implementing the simulation and running it under a wide range of conditions. Second, we introduce and study a Moran process in which there is natural selection for gene clustering and rearrangement occurs by genome inversion events. Finally, we develop and study a model that includes selection and inversion, which tracks the occurrence and fixation of rearrangements. Surprisingly, gene clusters fail to evolve under a wide range of conditions. Factors that promote the evolution of gene clusters include a low number of genes in the pathway, a high population size, and in the case of the selfish operon model, a high horizontal transfer rate. The computational analysis here has shown that the evolution of gene clusters can occur under both direct and indirect selection as long as certain conditions hold. Under these conditions the selfish operon model is still viable as an explanation for the evolution of gene clusters
    • …
    corecore