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The Human Reference Genome serves as the foundation for modern genomic analyses. However, in its present form, it 

does not adequately represent the vast genetic diversity of the human population. In this study, we explored the 

consensus genome as a potential successor of the current Reference genome and assessed its effect on the accuracy of 

RNA-seq read alignment.  In order to find the best haploid genome representation, we constructed consensus genomes 

at the Pan-human, Super-population and Population levels, utilizing variant information from the 1000 Genomes 

project. Using personal haploid genomes as the ground truth, we compared mapping errors for real RNA-seq reads 

aligned to the consensus genomes versus the Reference genome. For reads overlapping homozygous variants, we found 

that the mapping error decreased by a factor of ~2-3 when the Reference was replaced with the Pan-human consensus 

genome. Interestingly, we also found that using more population-specific consensuses resulted in little to no increase 

over using the Pan-human consensus, suggesting a limit in the utility of incorporating more specific genomic variation. 

To assess the functional impact, we compared splice junction expression in the different genomes and found that the 

Pan-human consensus increases accuracy of splice junction quantification for hundreds of splice junctions. 

Background 
In 2003, 15 years of work culminated with the International 

Human Genome Sequencing Consortium publishing the first 

finished version of the Human Reference Genome 

(https://www.genome.gov/human-genome-

project/Completion-FAQ; IHGSC 2004). Despite the utility 

and continuous improvements over the years, it is still not 

without flaws – primarily the lack of variation information. 

Around 93% of the current GRCh38 assembly is composed of 

DNA from just 11 individuals 

(https://www.ncbi.nlm.nih.gov/grc/help/faq/; Lander et al. 

2001). Because such a large portion of the Reference comes 

from such a small pool of individuals, it does not adequately 

represent the vast diversity present in the human population 

(Chen and Butte 2011; Rosenfeld et al. 2012; Sherman et al. 

2019). To explore and capture human diversity, researchers 

have continued sequencing thousands of genomes. The first of 

such projects, the 1000 Genomes Project, sequenced 2,504 

individuals across 26 populations. Overall, it was estimated that 

~3,000 genomes would be necessary to capture the most 

common variants (Ionita-Laza et al. 2009), while structural 

variation present in the human populations has challenged this 

(Berlin et al. 2015). One particularly glaring example was 

shown in a recent construction of an African pan-genome, 

which contained almost 300M bases of DNA not seen in 

GRCh38 (Sherman et al. 2019). This lack of variation 

information negatively affects all kinds of genomic analyses 

that utilize the Reference, such as disease studies and GWAS 

analyses (Buchkovich et al. 2015; Castel et al. 2015; Chen and 

Butte 2011; Rosenfeld et al. 2012; Sherman et al. 2019; 

Stevenson et al. 2013). However, despite the ubiquity of RNA-

seq alignment and quantification, the improvements on 

mapping from using a more diverse reference have not been 

shown. 

While graph genomes are theoretically capable of encapsulating 

all observed variation information (Church et al. 2015; Garrison 

et al. 2018; Paten et al. 2017; Rakocevic et al. 2019; Sirèn et al. 

2020; Valenzuela et al. 2018), it remains difficult to use these 

tools for large scale expression analysis such as in RNA-seq 

quantification. In prior work, we proposed the use of a 

consensus genome to inherently capture common variation, 

whilst still retaining the structure and functionality of the 

current Reference assembly (Ballouz et al. 2019). A consensus 

genome is a linear haploid genome that incorporates population 

variation information by replacing all minor alleles in the 

Reference genome with the major allele of that variant 

(Balasubramanian et al. 2011; Ballouz et al. 2019; Barbitoff et 

al. 2018; Dewey et al. 2011; Karthikeyan et al. 2016; Pritt et al. 

2018; Shukla et al. 2019) (Figure 1a). Because allele 

frequencies must be defined with respect to a population, a 

consensus genome is representative of the population used to 

define the major and minor alleles. Prior work has shown that 

using a consensus genome can have positive effects on variant 

calling, (Karthikeyan et al. 2016; Pritt et al. 2018; Shukla et al. 

2019) and construction of population-specific consensus 

genomes has been a major goal of multiple projects (Cho et al.  
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Figure 1: a) Construction of a consensus genome; the minor allele in the Reference is replaced by the most common allele in the 

population. 

b) Visual representation of the individuals used to construct consensus genomes of varying population specificity. 

c) ConsDB workflow. 

d) Number of major alleles for each population consensus genome that were replaced in the Reference. 

e) Number of SNPs and indels shared between different combinations of the Pan-human, Super-population, and Population consensus 

genomes for the African population. The bars in the top bar plot show the number of SNPs and indels that are unique to the intersection 

of genomes indicated in the dot matrix below. The horizontal bars on the bottom left show the total number of SNPs and indels present 

in each genome. 

f) Number of SNPs and indels shared between different combinations of the Pan-human consensus and all 3 super-population 

consensus genomes. The bars in the top bar plot show the number of SNPs and indels that are unique to the intersection of genomes 

indicated in the dot matrix below. The horizontal bars on the bottom left show the total number of SNPs and indels present in each 

genome.  
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2016; Fakhro et al. 2016; Higasa et al. 2016; Sherman et al. 

2019; Takayama et al. 2019). Additionally, replacing the 

current Reference genome with a consensus genome in existing 

analysis pipelines is straightforward, since the consensus 

genome is still a linear haploid sequence. 

Here, we seek to answer the question of which linear reference 

representation is best for RNA-seq mapping and downstream 

analyses. We considered several consensus genomes, built by 

replacing all minor alleles in the reference with the major alleles 

at different population levels: pan-human, super-population, 

and population. To work with consensus genomes, we 

developed ConsDB to construct pan-human and population-

level consensuses, and STAR-consensus to streamline RNA-

seq mapping to consensus genomes. We defined the ground 

truth by mapping the individuals' RNA-seq reads to their own 

personal haploid genomes, and evaluated the mapping accuracy 

improvements arising from replacing the GRCh38 reference 

with the Pan-human consensus, Super-population or Population 

consensus genomes. We found that for all individuals, the Pan-

human consensus decreased the mapping error from the 

Reference by ~2-3 fold, while the Super-population and 

Population consensuses did not perform significantly better 

than the Pan-human consensus. To assess the functional impact, 

we measured errors in splice junction expression quantification 

for different genome representations with respect to the ground 

truth of the personal genome. We again found that the Pan-

human consensus offers an improvement over the Reference, 

with ~5 times as many splice junctions having a larger 

quantification error for the Reference than for the Pan-human 

consensus. 

Pan-human Consensus captures the 

majority of population deviation 

from the Reference 
The construction of consensus genomes requires population 

allele frequency information. Currently, several databases exist 

that contain this information (Auton et al. 2015; Church et al. 

2015; Karczewski et al. 2020; Sherry et al. 2001). In this study 

we utilized the 1000 Genomes Project database, which was 

established in order to discover and catalogue human genome 

variant information (Auton et al. 2015; Clarke et al. 2017). In 

order to avoid population bias, the individuals genotyped in the 

1000 Genomes Project were selected to create an even 

population distribution across 26 populations, which are 

grouped into 5 super-populations (Auton et al. 2015) (Figure 

1b). The information from the 1000 Genomes Project is 

available through the International Genome Sample Resource 

(IGSR), and can be downloaded in the form of VCF files, which 

contain variant genotype information for all of the individuals 

contained in the analysis (Auton et al. 2015). 

We constructed three types of consensus genomes based on the 

various population levels present in the 1000 Genomes Project: 

a Pan-human consensus genome, a Super-population consensus 

genome, and a Population consensus genome (Figure 1b). For 

the Pan-human consensus we calculated allele frequency using 

genotype information from all individuals present in the 

database. For the Super-population and Population 

consensuses, we used genotype information from all 

individuals of a given super-population or population. For the 8 

individuals whose RNA-seq data we utilized in this study, we 

used the consensus genomes built from the super-population 

and population to which each individual belongs. To construct 

these consensuses, we replaced all minor alleles (alleles with a 

population allele frequency AF < 0.5) present in the Reference 

with the major alleles (AF > 0.5). We will call these variants 

replaced in the reference the major allele replacements (MAR). 

The release of the 1000 Genomes database that we used 

contained only biallelic variants, i.e. each variant had exactly 

one minor allele and one major allele. Additionally, it only 

contained SNPs and small insertions and deletions (<50 bp), 

while large structural variants were not considered in this study. 

Although SVs are a large source of genomic variation, they are 

understudied and not sufficiently catalogued to be used in 

consensus genomes due to mapping and classification 

difficulties (Mahmoud et al. 2019). 

In order to facilitate working with the large VCF files of the 

1000 Genomes Project database, we developed ConsDB, a 

Python package that provides a convenient, class-based 

interface to work with the large number of variants contained in 

the 1000 Genomes Project database. It also provides a main 

script with a number of run modes to perform common tasks 

associated with consensus genomes, such as the construction of 

the consensus genome VCF files used in this study. ConsDB 

operates using a simple workflow (Figure 1c). The first step is 

downloading the database VCF files. For this study, we used 

the 1000 Genomes Project, but ConsDB is also capable of 

parsing gnomAD VCF files. The next step is for ConsDB to 

parse the database VCF files and save them in the ConsDB 

format. At this point, files from different databases (if multiple 

databases are being used) can be combined into one file per 

chromosome. Finally, ConsDB uses these parsed files to 

generate the end result, in this case a VCF file defining a 

consensus genome. 

The personal haploid genomes were constructed using the 

individual genotypes from the 1000 Genomes Project database. 

For each individual, all homozygous variants that differ from 

the Reference were inserted into the Reference. Additionally, 

all heterozygous alleles were randomly chosen with a 
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probability of 0.5 to be included or excluded. Although these 

haploid personal genomes are a crude approximation of the true 

diploid genome, they are sufficient for comparison of mapping 

accuracy between haploid consensuses and the haploid 

Reference, and thus we used them to define the ground truth for 

RNA-seq mapping in this study. 

Figure 1d shows the number of minor alleles in the GRCh38 

reference that have to be replaced with the major alleles for each 

of the Super-population consensus genomes. The European 

consensus is the most similar to the Reference, and it still 

requires ~2.1 million SNP and indel corrections from the 

Reference. Other Super-population consensuses contain even 

larger numbers of major allele deviations from the Reference, 

with the East Asian consensus differing most from the 

Reference. We note that such a large number of minor alleles in 

the Reference with respect to any population stems from its 

construction, which utilized sequences from only one 

individual for most of the genomic loci, and thus incorporated 

individual-specific low frequency alleles. 

In Figure 1e, we compute intersections of the MARs in the Pan-

human, African Super-population, and Yoruban Population 

consensus genomes. The Pan-human consensus shares most of 

the major alleles with the Super- and Population consensuses 

(~1.5M), while the latter two share ~400k MARs not present in 

the Pan-human consensus. The Pan-human consensus contains 

~300k MARs not present in either Super- or Population 

consensuses. Finally, the Yoruban Population consensus 

contains ~50k unique MARs. The intersections of MARs look 

similar for other populations (Supplementary Figures S1-2) as 

well as personal homozygous variants (Supplementary Figures 

S3-5). Figure 1f shows the intersections between the MARs for 

the Pan-human consensus and 3 Super-population consensuses. 

The MARs shared by all four of these genomes make up the 

largest group, which contains ~1.2M MARs and represents well 

over half of the MARs in any one genome. This group is more 

than 3 times as large as the next largest group, again 

demonstrating that the majority of the population deviation 

from the Reference is captured in the Pan-human consensus. 

Consensus genomes significantly 

improve RNA-seq mapping 
Next, we analyzed to what extent the consensus genomes 

improve RNA-seq mapping accuracy. The RNA-seq reads were 

taken from the Human Genome Structural Variation 

Consortium, which sequenced three father-mother-daughter 

trios from the 1000 Genomes Project (Fairley et al. 2020). One 

of these individuals (HG00514 from the East Asian trio) is not 

present in the database version used in this analysis and was 

excluded from our analysis.  

To simplify alignment to the consensus genome, we developed 

STAR-consensus, an extension to the RNA-seq aligner STAR 

(Figure 2a) (Dobin et al. 2013). It imports variants from a VCF 

file and incorporates them into the reference genome sequence, 

thus creating a transformed genome for mapping. Importantly, 

after mapping the reads to the transformed genome, STAR-

consensus can perform a reverse transformation of the 

alignment coordinates back to the original reference genome 

coordinates. This transformation is non-trivial when insertion 

or deletion variants are included, and allows performing all 

downstream analyses in the reference coordinate system. Such 

an approach is an incremental but important step towards taking 

advantage of the consensus genome, while at the same time 

utilizing the conventional coordinate system. 

In order to assess error rate, we needed to compare the read 

mappings in the various genomes to a ground truth. However, 

because the true mapping location of these reads is unknown, 

we used the read mappings to the personal haploid genomes as 

the ground truth. The personal haploid genomes are a close 

approximation of the true genomes, and therefore the locations 

to which the reads map in the personal genomes should be quite 

similar to their true original locations. 

We classified mapping errors into five types of errors based on 

the change of the read’s alignment status in the 

Reference/consensus genome compared to the ground truth 

(Figure 2b). The different error types are: reads that are mapped 

uniquely in the personal genome but mapped to multiple places 

in the other genome (Unique to Multiple), reads that are mapped 

to multiple places in the personal genome but mapped uniquely 

in the other genome (Multiple to Unique), reads that mapped to 

the personal genome but not to the other genome (Mapped to 

Unmapped), reads that didn’t map to the personal genome but 

did map to the other genome (Unmapped to Mapped), and reads 

that mapped uniquely in both genomes but to different positions 

(Different Mapping Loci). The mapping error rate for an error 

type is defined as the number of erroneously mapped reads 

normalized by the total number of reads from an individual.  

For each individual, we calculated the error rates for mapping 

to the Reference and their respective consensus genomes (Pan-

human, Super-population, Population). Figure 2c shows the 

overall error rates for each error type for the individual 

NA19238. The largest error comes from the reads that switch 

from mapping uniquely in the personal genome to mapping to 

multiple loci in the Reference/consensus genomes, followed by 

reads that map to multiple loci in the personal genome but map 

uniquely in the Reference/consensus. 

We also separately plotted the error rate for reads that overlap 

indel variants (Supplementary Figure S6), which are very small 

compared to the overall error rates in Figure 2c. These plots  
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Figure 2: a) Internal workflow of STAR-consensus. 

b) Different types of mapping errors based on the read’s mapping status in the individual’s haploid personal genome and the Reference 

or given consensus genome. 

c) Overall mapping error rate for each error type for individual NA19238. Genome is shown on the x-axis and the mapping error rate is 

shown on the y-axis. 

d) Overall mapping error rate for all individuals. Genome is shown on the x-axis and the mapping error rate is shown on the y-axis. 

Individuals from the same population are grouped together by color, with each marker shape representing one individual in the 

population. The dashed line shows the average error rate for the population and the solid vertical line shows the range of the population. 

e) Homozygous mapping error rate for each error type for individual NA19238. Genome is shown on the x-axis and the mapping error 

rate is shown on the y-axis. 

f) Homozygous mapping error rate for all individuals. Genome is shown on the x-axis and the mapping error rate is shown on the y-

axis. Individuals from the same population are grouped together by color, with each marker shape representing one individual in the 

population. The dashed line shows the average error rate for the population and the solid vertical line shows the range of the 

population. 
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look similar for the other individuals (Supplementary Figures 

S7-20). 

Figure 2d shows the overall mapping error rate for all eight 

individuals, summed over the five error types. We see a 

noticeable decrease in the error rate when the Reference 

genome is replaced with the Pan-human consensus. Notably, 

increasing population specificity to the Super-population or 

Population consensus does not result in a significant further 

reduction of the error rate. This trend mirrors the observation 

about the minor alleles discussed above (Figure 1e-f), and 

supports the conjecture that the majority of the mapping 

accuracy improvement is captured by the Pan-human 

consensus, with little additional benefit from the Super-

population or Population consensuses. 

Replacement of the minor alleles in the Reference with the 

major alleles in the consensus can only correct the mapping 

errors caused by the homozygous alternative alleles in an 

individual. Of course, the actual individual genome is diploid 

and contains millions of heterozygous variants (i.e. both the 

major and minor alleles are present), which cannot be truthfully 

represented in a haploid Reference or consensus genome. To 

elucidate this issue, we defined the homozygous mapping error 

rate as the number of erroneously mapped reads that overlap 

homozygous variants normalized by the total number of reads 

overlapping homozygous variants for an individual. The 

homozygous mapping error rate shows the effect of different 

genomes specifically on read alignments that can be affected by 

these genomes. Because the genomes used in this study are all 

haploid, we do not expect reads that overlap heterozygous 

variants to be significantly affected by the specific genome 

used. 

We plotted the homozygous mapping error rates for the 

individual NA19238 (for each error type) in Figure 2e, and for 

all eight individuals (summed over all error types) in Figure 2f. 

Compared to Figure 2c-d, the homozygous error rates (Figures 

2e-f) show a much steeper decrease when the Reference 

genome is replaced with the Pan-human consensus. 

Additionally, the heterozygous error rate is higher than the 

homozygous error rate and stays relatively constant across all 

genomes (Supplementary Figures S21-28). This supports the 

notion that consensus genomes significantly improve mapping 

accuracy of the reads that overlap homozygous variants, 

however, owing to their haploid nature, they cannot improve 

the alignment of the reads overlapping heterozygous loci. 

Mapping RNA-seq reads to 

unrelated consensus genomes 

outperforms the Reference 
We next investigated the effects of mapping an individual’s 

RNA-seq reads to consensus genomes of different populations 

(Figure 3a) and to other personal haploid genomes (Figure 3c). 

We used the same reads, individuals, and genomes as 

previously discussed, and mapped all individuals to all 

genomes. The homozygous mapping error rate is calculated as 

before, and is shown in Figures 3b,d. 

As expected, Figure 3b shows that the unrelated consensus 

genomes perform worse than both related Population consensus 

and the Pan-human consensus, because each Population 

consensus contains many major alleles unique to that 

population. Interestingly, unrelated consensus genomes still 

perform better than the Reference. This is explained by the fact 

that the Reference contains a large number of minor alleles 

specific to the individuals who contributed to the Reference 

assembly. Conversely, the personal genomes of unrelated 

individuals are unlikely to share many MARs. This is illustrated 

in Figure 3d: the mapping error rate to personal genomes from 

different populations is higher than mapping to the Pan-human 

consensus and is comparable with mapping to the Reference. 

Notably, even mapping to the unrelated individual from the 

same population (Mother to Father and Father to Mother) does 

not improve the accuracy significantly. However, since the 

daughter in each trio will share many of her MARs with her 

parents, we see the error rates for mapping daughters’ RNA-seq 

reads to their parents’ genome (and vice versa) slightly better 

than mapping to the Pan-human consensus. 

The results demonstrate that the Reference genome performs 

worse than any consensus genome, even consensuses from a 

different population. The accuracy of mapping to the Reference 

is comparable to mapping to unrelated personal genomes. On 

the other hand, the Pan-human consensus outperforms mapping 

to the unrelated individual genomes of the same or different 

population, and its performance is comparable with mapping to 

the genomes of related individuals (parent to child). 

Mapping error-causing variants are 

predominantly located in introns and 

UTRs 
To investigate the genomic mechanisms underlying these 

mapping errors, we classified the genomic loci of the error-

causing variants by overlapping error-causing reads with the 

GENCODE v29 GTF file. Interestingly, only a small proportion 

of the error-causing variants occur in the coding regions, while  
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Figure 3: a) Each individual from each population is independently mapped to the Reference, Pan-human consensus, and all population 

and super-population consensus genomes. 

b) Homozygous mapping error rate when mapping to different consensus. The color of the marker indicates the population to which 

that individual belongs, while the shape of the marker identifies the individual within the trio. The color of the background rectangle 

indicates the population of the genome. 

c) Each individual from each population is independently mapped to the Reference, Pan-human consensus, and all personal haploid 

genomes. 

d) Homozygous mapping error rate when mapping to different personal haploid genomes. The color of the marker indicates the 

population to which that individual belongs, while the shape of the marker identifies the individual within the trio. The color of the 

background rectangle indicates the population of the genome. The shape at the top of each bar indicates to which individual in the trio 

that genome belongs.  
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most are located in the intronic regions, followed by UTR and 

intergenic regions (Figure 4a). Because polyA+ RNA-seq reads 

should generally not map to introns, these errors are likely 

attributable to reads switching between being uniquely mapped 

and mapping to multiple locations (Unique to Multiple and 

Multiple to Unique error types). Interestingly, this corresponds 

with the previous observation that the largest sources of errors 

were the Unique to Multiple and Multiple to Unique error types. 

Consensus alleles generate large 

changes in splice junction expression 
Here, we explore the effect of replacing the Reference with a 

consensus genome on splice junction expression. We define 

splice junction expression as the number of uniquely mapping 

reads which are spliced through the junction. Here we only 

consider annotated junctions, and define quantification error as 

the log2-ratio of the junction read counts in the Reference or 

Pan-human consensus to the junction read count in the personal 

genome (ground truth). Although the vast majority of splice 

junctions show very similar expression results for both 

genomes, there are many splice junctions with large 

quantification errors (Figures 4b-d). To reduce noise, we 

filtered the splice junctions with low expression in all three 

genomes at three counts thresholds of 1, 10, and 25 (Figure 4c-

d). For all three thresholds, there were ~4-5 times as many 

splice junctions for which the quantification error in the 

Reference was higher than that in the Pan-human consensus 

(Figure 4d). 

To illustrate the effect of consensus genomes on splice junction 

expression, we looked at a splice junction in the CBWD1 gene. 

This splice junction has very low expression in the Reference, 

but is highly expressed in the Pan-human consensus genome 

and the HG00512 personal genome. This disparity signifies a 

large error in the Reference with respect to the ground truth, 

which is mitigated by the Pan-human consensus. A genome 

browser snapshot of the region of the CBWD1 gene containing 

this splice junction is shown in Figure 4e, highlighting the 

effects that MARs can have on read mapping and on splice 

junction quantification. In this case, the Reference contains the 

minor allele, which prevents reads from mapping to the exon. 

However, both the Pan-human consensus and personal 

HG00512 genome contain the major allele, allowing the reads 

to be mapped to the exon. Because of this MAR, the isoforms 

containing this splice junction have erroneously low expression 

when reads are mapped to the Reference The Pan-human 

consensus rectifies the problem, predicting high expression of 

these isoforms that agrees with the ground truth of the personal 

genome mapping. 

Discussion 
In any data analysis, often a first central question is how much 

variation to include. This might be accomplished by dimension 

reduction, quality control, feature selection, stratification, or 

other techniques. The human genome is no exception, and 

considering how best it should be summarized remains a crucial 

problem. Importantly, that problem may have a use-dependent 

solution: what is important for disease variant detection may not 

be important for RNA-seq alignment, and vice versa. The 

current Reference genome has had enormous utility, and before 

tearing down the infrastructure that has been built up to exploit 

it, it is important to consider alternatives carefully. Graph 

genome methods are one promising option, and they resolve the 

main deficiency in the reference: effectively incorporating all 

variation (or aspiring to). However, this comprehensiveness 

comes with its own host of issues, such as the lack of a simple 

coordinate system, difficulties with visualization, and 

significantly inflated computing requirements. The wide 

adoption of a graph-based reference genome will likely take a 

long time, given the history of switching from one version of 

the linear Reference to the next: GRCh38 was released in 

December 2013 (https://genome.ucsc.edu/FAQ/FAQreleases.h

tml), and at the time of this writing, 7 years later, studies are 

still being published using GRCh37. 

Although the full adoption of a graph genome may be several 

years in the future, the path there need not be a straight line.  We 

may explore methods that partially improve on the current 

Reference, while imposing few of the costs of the graph 

methods. By progressively assessing the role of population 

variation (in essence, moving from low principal components 

to higher ones), we can develop intermediate forms moving 

from the current reference to more accurate reflections of 

population variation and, particularly, ones that still opt to 

summarize variability to some degree.  The consensus genomes 

have substantial utility at the pan-human level, and then show a 

fall off past that point, suggesting that the Pan-human 

consensus can be considered a first step in the direction of 

adding population variation information to the Reference. 

Although consensus genomes are unable to comprehensively 

represent all human genotypic variation, they are still a 

desirable alternative to the Reference as they eliminate the 

millions of spurious minor alleles present in the current 

Reference genome, while maintaining a simple linear 

coordinate system.  

In this study, we explored the advantages and limitations of 

using consensus genomes for RNA-seq mapping. We used read 

alignments to the haploid personal genome as a proxy for the 

ground truth to quantify the rate of erroneous alignments to the 

Reference genome, and compared it to the three levels of 

consensus: pan-human, super-population and population. 
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Figure 4: a) Counts of variants in the personal haploid genome that cause mapping errors in the Reference, classified by the genomic 

feature in which the variant is located. For each set of bars, the left bar shows the number of homozygous variants and the right bar 

shows the number of heterozygous variants.  

b) Log2 fold change between Pan-human consensus and Reference as a function of the max splice junction expression. Splice junctions 

with an absolute log fold change > 1.5 and a max expression value > 50 are labeled with the gene in which they fall. Triangles indicate 

an infinite log2 fold change (i.e. zero expression in one of the genomes). 

c) Difference between absolute values of Pan-human to Personal and Reference to Personal log-ratios. Different read count thresholds 

are represented by different colors.  

d) Cumulative distribution of the quantification error. Solid lines represent splice junctions which have larger quantification errors in 

the Reference than in the Pan-human genome; dashed lines represent the opposite cases.  

e) Read coverage and splice junction tracks for HG00512 reads aligned to the Reference, Pan-human consensus, and HG00512 

personal genome. The region shown is part of the CBWD1 gene. The two Variants tracks show the location of a shared MAR that is 

present in the Pan-human consensus and the HG00512 personal genome.  
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The overall mapping error rate caused by Reference 

shortcomings is quite small at only ~0.5-0.6% of all reads for 

the Reference genome, and further reduced to 0.3-0.4% for the 

consensus genomes, leaving relatively small room for further 

improvements (Figure 2d). However, for some analyses, such 

as allele-specific expression or de novo variant calling, the only 

reads of interest are those that overlap the variants. If we 

normalize the number of the erroneous reads by the number of 

reads that overlap the personal variants for each individual, we 

observe much higher corresponding error rates of ~8-10%, 

which decrease to ~2-4% when using a consensus genome. 

The homozygous error rate (defined for reads that overlap only 

homozygous variants) is substantially decreased (by ~2-3 fold) 

when the Reference genome is replaced by the Pan-human 

consensus. Surprisingly, using the Super-population or 

Population consensuses does not result in further improvement 

of the mapping accuracy, which indicates that the Pan-human 

consensus captures the majority of population variation 

information that can be captured in a linear haploid genome. 

Using the Super-population or Population consensus genomes 

may not be worth the loss of generality: for instance, it will 

severely complicate interpopulation comparisons owing to the 

lack of a common coordinate system. 

These mapping results call into question the time and resources 

that are being spent on constructing consensus genomes for 

particular populations (Cho et al. 2016; Fakhro et al. 2016; 

Higasa et al. 2016; Sherman et al. 2019; Takayama et al. 2019). 

Intuitively, one would expect that more specific consensus 

genomes would increase the mapping accuracy for the 

populations that they represent. However, our results indicate 

that a universal Pan-human consensus genome is sufficient to 

attain the best possible accuracy that can be achieved with a 

haploid reference, and the expensive efforts to construct more 

population-specific references are likely futile for improving 

accuracy of RNA-seq analyses. 

On the other hand, the heterozygous error rate (for reads that 

overlap heterozygous variants) is not significantly reduced by 

replacing the Reference with a consensus of any population 

level. This is not surprising given that the haploid genome can 

only include one of the alleles of a heterozygous locus, and 

hence cannot truthfully represent it. Graph genomes or other 

non-linear reference representations will be required to reduce 

error rates for heterozygous loci. 

Although there is still work to be done on improving the 

Reference genome, the Pan-human consensus already offers 

noticeable improvements in downstream analyses, as indicated 

by the difference in splice junction expression quantification. 

We demonstrated that the accuracy of the splice junction 

quantification is significantly improved by switching from the 

Reference to the Pan-human consensus. These improvements 

imply important consequences in functional analyses such as  

alternative splicing, transcript abundance quantification and 

differential isoform usage. Splice junction differences are 

subtle, but the 5-fold difference in the number of splice 

junctions with higher quantification error in the Reference than 

in the Pan-human consensus demonstrates that the Pan-human 

consensus offers important improvements over the Reference. 

Results from a similar analysis of gene isoform expression 

(Supplementary Information) provide additional support for 

this claim. 

The Pan-human consensus appears to be a strict improvement 

over the current Reference with minimal costs, and thus we 

propose replacing the current Reference with the Pan-human 

consensus. Besides the question of absolute utility, we also 

advocate using consensus genomes as a mechanism to develop 

practices to improve genome representation more generally. 

Recent years have seen genomics pipelines using the Reference 

become entrenched, to varying degrees, by researchers 

unwilling to upgrade. Because the consensus genome requires 

very minor changes in pipelines, it can be used as a 

straightforward, first-order approximation to assess and explore 

the sensitivity of specific genomic analyses to genome 

variation. For instance, the benefits of the consensus genome 

for RNA-seq mapping can be explored via the STAR-consensus 

pipeline, which aligns reads to the consensus genome and then 

transforms the coordinates to the Reference genome 

coordinates, thus eliminating the need for changes in the 

downstream processing. By incorporating consensus genomes, 

we envision not only improvements in both the absolute 

performance of diverse research projects, but also a greater 

understanding of the dependencies in those methods, thus 

setting the stage for a more flexible and robust future for 

genomics. 

Methods 

Calculating consensus alleles 

We calculated the consensus allele for each variant on a per-

haplotype basis: the number of occurrences of each allele was 

counted, and the most common allele was selected. For the Pan-

human consensus, the alleles were counted across all 

individuals. For each Super-population and Population 

consensus, the alleles were counted across all of the individuals 

within that group. This counting was performed in Python by 

ConsDB, by reading through each VCF file one line at a time 

and parsing the genotype for each individual in the group for 

which the consensus is being constructed. 
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Genome generation and read mapping 

All genomes generation and read mapping was done with 

STAR v2.7.7a (Dobin et al. 2013). We used GRCh38 

(Schneider et al. 2016) as the reference FASTA file and 

GENCODE v29 (Frankish et al. 2019) as the reference GTF 

file. We masked the PAR regions on the Y chromosome in order 

to avoid any sex-based differences in mapping. For the 

generation of consensus and personal haploid genomes, we 

used the --genomeTransformType Haploid option 

and the --genomeTransformVCF option with the 

appropriate VCF file. For the read mapping, we used 

the --genomeTransformOutput SAM SJ and 

the --quantMode GeneCounts TranscriptomeSAM 

options. We also used the --outSAMreadID Number 

option in order to more easily keep track of reads in the analysis 

steps. Other than these options, we used the default STAR 

parameters. 

Mapping error calculations 

Before calculating the mapping error, we made a number of 

preparations. First, we used awk to construct a VCF file for each 

individual that contained only the variants and that individual’s 

phased genotype. Next, we used these full VCFs to partition the 

variants for each consensus genome for each individual into 

four separate VCF files: one for homozygous SNPs, one for 

heterozygous SNPs, one for homozygous indels, and one for 

heterozygous indels. These four split VCFs needed to be 

generated for each individual, including individuals from 

within the same population, because variants may be 

homozygous in one individual but heterozygous in a different 

individual. 

For each individual, their filtered alignments for the Reference, 

Pan-human consensus, Super-population consensus, and 

Population consensus were compared to the filtered alignment 

for their personal haploid genome using an awk script. We 

compared the genomes on a per-read basis, checking for 

differences in mapping position and number of mapped loci. To 

determine what types of variants each read overlapped, we 

overlapped the filtered BAM files with each of the four split 

VCF files using bedtools, for each genome and each individual. 

We compared the read IDs from this overlap with the read IDs 

obtained from the genome mapping comparisons using grep, in 

order to find error-causing variants. 

The final steps of read counting and plotting were done using a 

Python script. For each individual, we summed the read counts 

for each combination of error type and 

homozygous/heterozygous variants across all four genomes 

being analyzed. The two normalization constants used for these 

figures were the total number of mapped reads for each 

individual, and the total number of reads for each individual that 

overlapped personal homozygous variants. The total mapped 

read numbers were extracted from the STAR Log.final.out file. 

The counts of reads overlapping personal homozygous variants 

were found by counting the number of reads present in the 

previously found overlap files for reads overlapping 

homozygous variants in the personal haploid genome. 

Finding error-causing variant locations 

To find the genomic annotations of error-causing variants, we 

first found the error-causing variants as described previously. 

We next used bedtools to intersect these variants with the 

GENCODE v29 (Frankish et al. 2019) GTF file and find all 

genomic annotations that each variant overlaps. Because certain 

genomic annotations always fall within other genomic 

annotations (e.g. an exon will necessarily be located within a 

gene), a given variant is likely to have multiple genomic 

annotations that it overlaps. We used a Python script to 

determine the most specific genomic annotation overlapped by 

each variant and to count the number of variants falling within 

each type of genomic annotation. 

Splice junction expression calculations 

The splice junction expression values used in our calculations 

were generated during the previously described read mapping 

section. Specifically, we used the number of uniquely mapped 

reads crossing the splice junction, which is given in the 7th 

column of the SJ.out.tab file generated by STAR. To calculate 

the quantification error for each genome, we used custom 

Python scripts. The log2 fold change values shown in Figure 4b 

were plotted without normalization, and the splice junctions for 

which the Reference had no unique reads crossing the splice 

junction were represented as arrows. Splice junctions for which 

both the Pan-human consensus and the Reference had 0 

expression were excluded from this plot. Additionally, these 

log2 fold change values were thresholded to +/- 5. Splice 

junctions with an absolute log fold change > 1.5 and a max 

expression value > 50 were labeled with the gene in which they 

fall. In Figures 4c-d, all read count values were normalized by 

an addition of 0.001 in order to prevent infinite log2 fold change 

values. 

Selection of splice junction of interest 

We selected the splice junction through a manual inspection 

process. We searched for a splice junction with a large absolute 

log2 fold change between the Reference and the Pan-human 

consensus, in order to find an example that would highlight the 

differences in splice junction expression between the two 

genomes. We also required that the splice junction fall within a 

protein coding gene. 
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Code Availability 

The ConsDB package is available on GitHub at 

https://github.com/kaminow/consdb. STAR-consensus is 

available at https://github.com/alexdobin/star. Scripts to re-

produce the analysis in this study are available at 

https://github.com/kaminow/ConsDB_analysis. 
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