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ABSTRACT

Co-expression analysis has provided insight into gene

function in organisms from Arabidopsis to Zebrafish.

Comparison across species has the potential to enrich

these results, for example by prioritizing among candidate

human disease genes based on their network properties,

or by finding alternative model systems where their co-

expression is conserved. Here, we present CoCoCoNet as a

tool for identifying conserved gene modules and comparing

co-expression networks. CoCoCoNet is a resource for both

data and methods, providing gold-standard networks and

sophisticated tools for on-the-fly comparative analyses

across 14 species. We show how CoCoCoNet can be

used in two use cases. In the first, we demonstrate

deep conservation of a nucleolus gene module across very

divergent organisms, and in the second, we show how the

heterogeneity of autism mechanisms in humans can be

broken down by functional groups, and translated to model

organisms. CoCoCoNet is free to use and available to all

at https://milton.cshl.edu/CoCoCoNet, with data and R

scripts available at ftp://milton.cshl.edu/data.

INTRODUCTION

How a gene’s expression level changes across conditions is
a rich source of information about its function, a fact which
gene co-expression networks aim to capture in a general
framework (1). Gene co-expression networks link genes by
their similarity in expression pattern, yielding connected
subnetworks which are likely to share biological functions (2).
One of the most important uses of co-expression networks is
to test whether a newly identified set of genes forms a clear
module (3). Once that is established, the specific topology
within the network can be studied in detail to determine central
nodes or to define critical co-expression relationships (4, 5).

The utility of expression as a readout across biological
systems has allowed co-expression network analysis to be
applied very broadly: to group and classify genes in model
organisms (e.g., Arabidopsis (6, 7), mice (8), and yeast
(9)), to find and characterize disease genes (e.g., in autism
(10), Parkinson’s disease (11), and heart disease (12)),
and as an important contributor to sophisticated algorithms
for inferring gene properties (e.g., miRNA targets (13),
transcription factor regulation (14), and GO annotations (15,
16)). Because evolution often works by rewiring existing
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gene-gene relationships, a particularly important area of co-
expression analysis is cross-species comparison. Though it
is well-established that cross-species analyses can enrich for
biologically relevant modules (17), even simple comparisons
remain very challenging. With CoCoCoNet, we have aimed to
systematize comparative co-expression, expanding the range
of species covered in the field as a whole, improving the
statistical rigor of network analysis within each species, and
enhancing the sophistication of integrative analyses across
species.

CoCoCoNet allows users to access novel research areas
by querying and comparing well-powered co-expression
networks for 14 species. With a few clicks, researchers
can input their gene or genes of interest, and look for
co-expression relationships that may be conserved across
large phylogenetic distances. While co-expression is a key
component of other web servers and databases such as
COXPRESdb (18), ATTED-II (19), GeneFriends (20), PlaNet
(21), MouseNet (22) and GeneMANIA (23), few provide
data beyond the standard model organisms (human, mouse,
fly, roundworm, yeast, and Arabidopsis). Those that do, lack
the ability to make cross-species comparisons. For example,
PlaNet, COXPRESdb and ATTED-II provide co-expression
data for several of the species we cover, but there are no
convenient methods to directly compare the networks, nor do
they perform any explicit analyses of co-expression strength.
In contrast, CoCoCoNet provides users with convenient access
to both data and methods for cross-species analyses. This
opens up a range of potential research questions, such as:

• Which genes are related to my target gene, and do those
relationships change across species?

• When has co-expression been conserved across large
phylogenetic distances?

• Does my gene set subdivide into clusters that are
maintained across species?

• Is my gene of interest co-expressed with other genes of
interest in species I do not study?

In the following, we summarize the methods, data, and
operation of CoCoCoNet and walk through two use cases: one
focused on highly co-expressed modules in yeast, and another
on autism disease genes. In addition, we provide substantially
expanded detail in our supplement – providing details on
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network construction, resources used, quality control, and
a complete walk-through of the webserver. We have made
all methods and data available for use by other researchers,
including the underlying network data and methods for
assessing it.

MATERIAL AND METHODS

RNA-seq datasets

Because the quality of co-expression data is highly correlated
with the total number of samples across all datasets (4), we
aimed to collect as much data as possible for each species.
To this end, we searched NCBI’s Sequence Read Archive
(SRA) database (24), using the R Bioconductor package
“SRAdb” (25) for bulk RNA-sequencing datasets (unique
SRA Study IDs), excluding those with fewer than 10 samples.
Cancer-related studies were also excluded since they are not
likely to generalize well. To maximize the independence of
co-expression measurements within individual datasets, we
included only one replicate (a.k.a. “run accession”) per unique
Biosample ID, choosing the replicate with the maximum
amount of data by number of spots. Reference genomes and
genome annotation files were downloaded from ENSEMBL
(26) (Sept 2019). Sequence reads were downloaded directly

Figure 1. Schematic of underlying data. Co-expression networks are
aggregated for each species, ortholog maps are generated for each pair of
species, and data quality of data is assessed using a neighbor voting algorithm
across all functional groups.

from NCBI’s ftp site (ftp://ftp.sra.ebi.ac.uk/vol1/fastq) and
were aligned to the reference genome using STAR v2.6.0c
(27). See table S1 for more details.

Datasets identified in SRAdb were included in our gold-
standard co-expression networks if they met two additional
criteria: measurable expression of at least 50% of all genes
(figure S2); and above-threshold similarity to an aggregate
expression profile characterizing all datasets. Procedurally,
this means that for every sample, we rank genes by expression
level, then average these ranks across all samples within
a dataset, and finally average these dataset-level results to
obtain a “global average”. Next, we compute the Spearman’s
correlation between each sample in each dataset and this
global average (figures S3 and S4). If the average of the worst
10 correlation coefficients is less than 0.3, we remove that
dataset entirely.

In combination with our minimal sample requirements,
these checks ensure that each dataset used in the aggregation
of our co-expression networks is both well-powered and likely
to generalize. Figure 2 contains a detailed summary of the
number of experiments and the total number of samples that
went into the construction of the aggregate networks. Further
detail on these datasets can be found in tables S2 and S4.

We note that we did not limit our search to a single
sequencing platform. In general, platform consistency is
maintained within experiments, and co-expression networks
are independently constructed and standardized, thus the
aggregation of these controlled networks is not affected by
this class of variability. In total, our data comprises of
39,517 samples across the 14 species, 34,729 of which utilize
Illumina HiSeq 2000 or 2500 (table S4).

Co-expression network construction and aggregation

Co-expression networks for each dataset were constructed
by computing Spearman’s correlation between every pair
of genes (figure S1). This generates a network that is
then rank standardized, and normalized by dividing through
by the maximum rank (4). Genes that are not observed
in a particular dataset naturally have no variance, making
correlation computations impossible. We replace these NA
values with the median value of the network. Networks
obtained from individual datasets were then aggregated by
adding all of the network adjacency matrices, then rank
standardizing and dividing by the maximum rank (figure 1).

While other co-expression tools use Pearson’s correlation
as their primary metric (18, 19, 20), we use Spearman’s
correlation. We have shown in (4) that there is marginal
difference in performance using Pearson’s correlation over
Spearman’s Correlation. We utilize the non-parametric
approach of Spearman’s to ensure that outlier values do not
have undue influence, allowing results to be driven by the
power of larger data.

Within CoCoCoNet, users can choose to query aggregates
built with almost all genes, or those built with a smaller
high-confidence set. Our minimal filter requires that genes
be expressed at least once in at least half of the datasets.
Genes that fail to meet this requirement are removed from
the aggregate co-expression network, yielding the “almost all
genes” set. A more stringent filter allows for faster processing,
and provides greater confidence in retained links. To filter for
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genes that are well-powered, we count the number of datasets
where a gene has at least 10 reads in each of 10 or more
samples. “High confidence genes” are those that meet these
criteria in more than 20 datasets.

Gene annotations and ortholog mapping

We use the Gene Ontology (GO) (28, 29) to obtain gene
function annotations. GO terms and gene associations
were obtained by merging data from NCBI’s website
(ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2go.gz) (Jan
2020) and the Bioconductor package “biomaRt” (30) (table
S3). Terms were then propagated in the ontology tree
using a transitive property and filtered to include terms
annotating between 10 and 1000 genes. These are then used
in enrichment analyses, performed using Fisher’s exact test
followed by an FDR correction.

Ortholog data is obtained from OrthoDB (31), allowing
us to provide 1-to-1 ortholog maps for every pair of species
included in CoCoCoNet (table S5). This is accomplished by
searching for the most recent phylogenetic split between the
two query species, and obtaining inferred orthology groups
for all genes descended from the common ancestor. Genes are
then filtered to the corresponding input species and mapped to
each other (figure 1) .

Network assessment

Guilt-by-association based methods are used to ascertain the
quality of co-expression networks (32), and can also be used to
determine the connectivity of a gene set. To accomplish this,
CoCoCoNet implements functions from the Bioconductor
package “EGAD” (33) on the gene set provided by the user,
along with the orthologs from the second species selected, and
GO annotations (figure 1). EGAD measures the performance
of a network and a gene set through the neighbor-voting
algorithm and reports an area under the receiver operating
curve (AUROC) or the area under the precision recall curve
(AUPRC). These performances can also be compared to
predictions based solely on node degree (34). AUCs close to
0.5 indicate poor performance, 0.7 being quite good, and 1

being perfect. If the AUCs from both species are high, the
tested gene sets and their co-expression modules can be said
to be conserved, particularly if the node degree bias is low.

Implementation

This web server is implemented using the open source R
Shiny Server (35). In our networks, nodes are genes and
edges are normalized average correlation statistics across all
underlying datasets, as detailed above. Visual clustering of
each network is implemented using the physical properties of
the network and the “visNetwork” R package (36). We assign
each node a mass proportional to its total node degree, where
the larger the mass, the more repulsive the node. A Barnes-Hut
n-body simulation (37) is applied, forcing high degree nodes
towards cluster centers and low degree nodes towards the
cluster peripheries. Network data is stored in HDF5 format,
which allows for rapid search of specified data. Histograms
and scatter plots are generated using the R package “ggplot2”
(38) and made interactive using the R package “plotly” (39).

Web server description

CoCoCoNet is designed to be simple to use and as intuitive as
possible. User interactions are divided into three subsequent
phases. The first step simply requests input genes and a
species. The second step requires the input of a secondary
species, and the final step asks the user what metric to use
in characterizing the output subnetworks. Visualizations of
the network and the distribution of co-expression values are
reported after running the first two steps. In addition, gene set
enrichment is applied, and genes with over-represented GO
terms can be visualized directly in the subnetwork. In the final
step, we characterize the connectivity of the gene set as well as
any subnetworks related to GO terms within the gene set. We
typically report this as an AUROC, which specifies the degree
to which the network topology allows reconstruction of the set
of genes used as training, if some fraction of them are hidden
(i.e., cross-validation).

Overall, an input of about 200 genes will render a network
within 30 seconds and implement EGAD for GO groups

Figure 2. Left: Counts of experiments expressing at least half of all genes. Right: Counts of samples with a correlation with the global average greater than 0.3.
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Figure 3. Distribution of co-expression values for ortholog mapped genes to
the input of highly co-expressed yeast genes for each of the 13 other species.

within 10 seconds. An input of about 1000 genes will render
a network within 5 minutes and implement EGAD for GO
groups within a minute. Implementation of EGAD on the gene
set takes between 30 seconds to 5 minutes depending on the
selected species and the gene set to compare. In the interest
of user experience, we impose an upper limit of 1000 genes
since larger queries may interfere with processes of other
users. For larger scale inquiries, we recommend downloading
the relevant data and using CoCoCoNetLite, available at
ftp://milton.cshl.edu/data/scripts/cococonetLite.R. We refer
readers to the attached supplement(figures S5-S10) for a
detailed tutorial and usage guide of CoCoCoNet.

Downloadable

All data and R scripts used to generate results are available
at ftp://milton.cshl.edu/data. Data includes gene expression
networks as HDF5 files, GO annotations, gene ID conversion
tables, 1-to-1 ortholog mappings, the total degree of each
gene, and example gene lists. During each step, the user is
also able to download relevant data. In the first two steps, co-
expression networks and functional enrichment results can be
downloaded, with subnetworks in coordinate format. In the
final section, the user is able to download the AUROC (or
AUPRC) scores of each GO term for each species.

CASE STUDIES

Highly co-expressed yeast genes

Co-expression was first exploited as a global tool for
characterization of gene function by Eisen et al. in a study of
yeast (2), so for our first use case we returned to this original
benchmark gene set to walk through a simple validational use
of the main feature of CoCoCoNet. To define an interesting
gene set to explore, we first pruned the Eisen list by filtering
for genes with very high co-expression with at least one other
gene (see supplement for details). Then, mapping this set of

genes to every other species in CoCoCoNet, we see that most
orthologs remain very highly co-expressed with one another,
with average co-expression link-strengths above 0.8 (i.e., in
the top 20%, see figure 3). Beyond the individual network
links, the overall topology exhibits strikingly well-defined
modules. The first cluster contains primarily ribosomal protein
and translation related genes, in good agreement with group
I in the 1998 Eisen et. al. paper. Another cluster contains
predominately proteasome related genes, analogous to group
C, while the largest cluster contains genes with functions
relating to the nucleolus and translation regulation, among
others. See figure S11 for a dendrogram and heatmap of these
231 genes.

Using the ortholog mapping feature of CoCoCoNet, and
restricting our attention to the nucleolus (GO:0005730),
we can evaluate the co-expression of the input yeast
genes in other species. As expected for a structure
that is common to all eukaryotes, we find that this
function is highly conserved even at extreme phylogenetic
distances (e.g., yeast AUROC=0.9070, Arabidopsis=0.9111,
zebrafish=0.8770, fruitfly = 0.8320). A common feature of
co-expression networks is hub genes which are strongly
connected to many others (i.e., they have high node
degree). Supporting the specificity of the nucleolus gene-gene
connections, we find that our control test, which uses node
degree alone to predict module connectivity, has almost no
performance (AUROCs ⇡ 0.5). Together, these results indicate
that yeast nucleolus genes form a functional module that is
tightly conserved across distant species (figure 4).

Figure 4. Highly co-expressed yeast (S. cerevisiae) genes are mapped to
orthologous genes in Arabidopsis (A. thaliana), zebrafish (D. rerio), and
fruitfly (D. melanogaster). Genes annotated with the nucleolus (GO:0005730)
are highlighted, and the top 1% of connections are shown. Red stars denote
highly connected genes as measured by their node degree.

Autism spectrum disorder associated genes

The success of translational disease research relies on the
conservation of gene function between model organisms
and humans. However, in many cases, it remains unclear
whether disease mechanisms are sufficiently similar (40, 41).
Failures of translation have been particularly notable within
the neurosciences (42).

Autism spectrum disorder (ASD) is a syndrome with
known phenotypic and genetic heterogeneity (43, 44,
45). Past analyses have found that ASD genes fall into
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two major functional categories: those involved in gene
expression regulation (GER) and those involved in neuronal
communication (NC) (46, 47). This suggests that cases may
be subtyped based on the gene networks that are affected
by rare inherited or de novo variants. Here, we consider the
co-expression of a set of 102 genes associated with ASD
identified by the Autism Sequencing Consortium in (46) along
with the corresponding 1-to-1 orthologs in mouse, where
functional translation is likely to be key. These genes were
used as input to CoCoCoNet with default parameters.

Enrichment analyses of the 102 gene subnetworks in
both mouse and human indicate that GER and NC terms
are over-represented, as expected. CoCoCoNet also permits
direct comparison of the GER and NC modules within- and
across-species, suggesting which gene relationships can be
meaningfully assessed in the mouse as a model system.
Inputting the GER and NC gene sets into CoCoCoNet one
at a time, we can consider the modularity of each gene set
independently using the “Compute the gene set score” feature.
We find that the 58 GER genes have high co-expression edge
strengths with one another (average of 0.81), but they are not
preferentially connected with one another at all (AUROCs of
0.415 in human and 0.556 in mouse). This suggests that while
gene regulation is obviously an important function and the
strong co-expression edges of the genes reflect this, they also
possess equally strong relationships with other genes, making
targeted translation between species difficult. In contrast, the
24 NC genes have relatively weak edge strengths (average of
0.53), but are very preferentially connected with one another
(AUROCs of 0.880 in human and 0.859 in mouse), suggesting
a shared mechanism that is conserved between human and
mouse (figure S12).

DISCUSSION AND OUTLOOK

Co-expression networks are useful tools for investigating
gene function, but they require large-scale data aggregation
to be powered, and this has limited their broader use. We
have carefully curated and generated aggregate co-expression
networks for 14 species, chosen because they have sufficient
RNA-sequencing data as well as GO annotations. We share
them via the CoCoCoNet web server to aid researchers in their
comparative analyses.

CoCoCoNet provides fast enrichment and conservation
scores, displayed in a user-friendly manner. Here, we have
walked through two applications of CoCoCoNet, but there are
many other possibilities. We make it easy to reproduce the
analyses done in the web server by providing code alongside
visual outputs and quantitative results. In addition, we strongly
encourage users to download networks and explore them
with their own biological questions in mind. We expect that
future releases will encompass data from a wider variety of
organisms as new research emerges.
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FIGURE CAPTIONS

Figure 1 Schematic of underlying data. Co-expression
networks are aggregated for each species, ortholog
maps are generated for each pair of species, and
data quality is assessed using a neighbor voting
algorithm across all functional groups.

Figure 2 Left: Counts of experiments expressing at least
half of all genes. Right: Counts of samples with a
correlation with the global average greater than 0.3.

Figure 3 Distribution of co-expression values for ortholog
mapped genes to the input of highly co-expressed
yeast genes for each of the 13 other species.

Figure 4 Highly co-expressed yeast (S. cerevisiae) genes
are mapped to orthologous genes in Arabidopsis
(A. thaliana), zebrafish (D. rerio), and fruitfly (D.
melanogaster). Genes annotated with the nucleolus
(GO:0005730) are highlighted, and the top 1% of
connections are shown. Red stars denote highly
connected genes as measured by their node degree.
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