155 research outputs found

    Lamb shift in muonic deuterium atom

    Full text link
    We present new investigation of the Lamb shift (2P_{1/2}-2S_{1/2}) in muonic deuterium (mu d) atom using the three-dimensional quasipotential method in quantum electrodynamics. The vacuum polarization, nuclear structure and recoil effects are calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. The results are compared with earlier performed calculations. The obtained numerical value of the Lamb shift 202.4139 meV can be considered as a reliable estimate for the comparison with forthcoming experimental data.Comment: 24 pages, 11 figures. arXiv admin note: text overlap with arXiv:hep-ph/061229

    Hadronic Vacuum Polarization and the Lamb Shift

    Get PDF
    Recent improvements in the determination of the running of the fine-structure constant also allow an update of the hadronic vacuum-polarization contribution to the Lamb shift. We find a shift of -3.40(7) kHz to the 1S level of hydrogen. We also comment on the contribution of this effect to the determination by elastic electron scattering of the r.m.s. radii of nuclei.Comment: 7 pages, latex, 1 figure -- Submitted to Phys. Rev. A -- epsfig.sty require

    Two-Loop Bethe Logarithms for Higher Excited S Levels

    Get PDF
    Processes mediated by two virtual low-energy photons contribute quite significantly to the energy of hydrogenic S states. The corresponding level shift is of the order of (alpha/pi)^2 (Zalpha)^6 m_e c^2 and may be ascribed to a two-loop generalization of the Bethe logarithm. For 1S and 2S states, the correction has recently been evaluated by Pachucki and Jentschura [Phys. Rev. Lett. vol. 91, 113005 (2003)]. Here, we generalize the approach to higher excited S states, which in contrast to the 1S and 2S states can decay to P states via the electric-dipole (E1) channel. The more complex structure of the excited-state wave functions and the necessity to subtract P-state poles lead to additional calculational problems. In addition to the calculation of the excited-state two-loop energy shift, we investigate the ambiguity in the energy level definition due to squared decay rates.Comment: 14 pages, RevTeX, to appear in Phys. Rev.

    Hadronic effects in leptonic systems: muonium hyperfine structure and anomalous magnetic moment of muon

    Full text link
    Contributions of hadronic effects to the muonium physics and anomalous magnetic moment of muon are considered. Special attention is paid to higher-order effects and the uncertainty related to the hadronic contribution to the hyperfine structure interval in the ground state of muonium.Comment: Presented at PSAS 2002 (St. Petersburg

    Lamb shift in muonic helium ion

    Get PDF
    The Lamb shift (2P_{1/2}-2S_{1/2}) in the muonic helium ion (mu ^4_2He)^+ is calculated with the account of contributions of orders alpha^3, alpha^4, alpha^5 and alpha^6. Special attention is given to corrections of the electron vacuum polarization, the nuclear structure and recoil effects. The obtained numerical value of the Lamb shift 1379.028 meV can be considered as a reliable estimate for the comparison with experimental data.Comment: 18 pages, 11 figure

    One-loop self-energy correction to the 1s and 2s hyperfine splitting in H-like systems

    Get PDF
    The one-loop self-energy correction to the hyperfine splitting of the 1s and 2s levels in H-like low-Z atoms is evaluated to all orders in Z\alpha. The results are compared to perturbative calculations. The residual higher-order contribution is evaluated. Implications to the specific difference of the hyperfine structure intervals 8\Delta \nu_2 - \Delta \nu_1 in He^+ are investigated.Comment: 17 pages, RevTeX, 3 figure

    Correlated many-body treatment of Breit interaction with application to cesium atomic properties and parity violation

    Get PDF
    Corrections from Breit interaction to basic properties of atomic 133Cs are determined in the framework of third-order relativistic many-body perturbation theory. The corrections to energies, hyperfine-structure constants, off-diagonal hyperfine 6S-7S amplitude, and electric-dipole matrix elements are tabulated. It is demonstrated that the Breit corrections to correlations are comparable to the Breit corrections at the Dirac-Hartree-Fock level. Modification of the parity-nonconserving (PNC) 6S-7S amplitude due to Breit interaction is also evaluated; the resulting weak charge of 133^{133}Cs shows no significant deviation from the prediction of the standard model of elementary particles. The neutron skin correction to the PNC amplitude is also estimated to be -0.2% with an error bound of 30% based on the analysis of recent experiments with antiprotonic atoms. The present work supplements publication [A. Derevianko, Phys. Rev. Lett. 85, 1618 (2000)] with a discussion of the formalism and provides additional numerical results and updated discussion of parity violation.Comment: 16 pages; 5 figs; submitted to Phys. Rev.

    Self-Energy Correction to the Two-Photon Decay Width in Hydrogenlike Atoms

    Get PDF
    We investigate the gauge invariance of the leading logarithmic radiative correction to the two-photon decay width in hydrogenlike atoms. It is shown that an effective treatment of the correction using a Lamb-shift "potential" leads to equivalent results in both the length as well as the velocity gauges provided all relevant correction terms are taken into account. Specifically, the relevant radiative corrections are related to the energies that enter into the propagator denominators, to the Hamiltonian, to the wave functions, and to the energy conservation condition that holds between the two photons; the form of all of these effects is different in the two gauges, but the final result is shown to be gauge invariant, as it should be. Although the actual calculation only involves integrations over nonrelativistic hydrogenic Green functions, the derivation of the leading logarithmic correction can be regarded as slightly more complex than that of other typical logarithmic terms. The dominant radiative correction to the 2S two-photon decay width is found to be -2.020536 (alpha/pi) (Zalpha)^2 ln[(Zalpha)^-2] in units of the leading nonrelativistic expression. This result is in agreement with a length-gauge calculation [S. G. Karshenboim and V. G. Ivanov, e-print physics/9702027], where the coefficient was given as -2.025(1).Comment: 9 pages, RevTe

    Using Muonic Hydrogen in Optical Spectroscopy Experiment to Detect Extra Dimensions

    Full text link
    Considering that gravitational force might deviate from Newton's inverse-square law (ISL) and become much stronger in small scale, we propose a kind of optical spectroscopy experiment to detect this possible deviation and take electronic, muonic and tauonic hydrogen atoms as examples. This experiment might be used to indirectly detect the deviation of ISL down to nanometer scale and to explore the possibility of three extra dimensions in ADD's model, while current direct gravity tests cannot break through micron scale and go beyond two extra dimensions scenario.Comment: 9 pages, 2 figures. To appear in IJT

    Radiative Corrections to the Muonium Hyperfine Structure. I. The α2(Zα)\alpha^2 (Z\alpha) Correction

    Full text link
    This is the first of a series of papers on a systematic application of the NRQED bound state theory of Caswell and Lepage to higher-order radiative corrections to the hyperfine structure of the muonium ground state. This paper describes the calculation of the α2(Zα)\alpha^2 (Z\alpha) radiative correction. Our result for the complete α2(Zα)\alpha^2 (Z\alpha) correction is 0.424(4) kHz, which reduces the theoretical uncertainty significantly. The remaining uncertainty is dominated by that of the numerical evaluation of the nonlogarithmic part of the α(Zα)2\alpha (Z\alpha )^2 term and logarithmic terms of order α4\alpha^4.Comment: 56 pages, Rev.tex V3.0 and epsf.tex. 12 postscript files are called in the text. Version accepted by Phys. Rev. D. A new table is adde
    • …
    corecore