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Two-Loop Bethe logarithms for higher excitedS levels

Ulrich D. Jentschura
Max-Planck-Institute für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany

and National Insitute of Standards and Technology, Gaithersburg, Maryland 20899-8401, USA
(Received 27 May 2004; published 15 November 2004)

Processes mediated by two virtual low-energy photons contribute quite significantly to the energy of hydro-
genicS states. The corresponding level shift is of the order ofsa /pd2 sZad6 mec

2 and may be ascribed to a
two-loop generalization of the Bethe logarithm. For 1S and 2S states, the correction has recently been evalu-
ated by Pachucki and Jentschura[Phys. Rev. Lett.91, 113005(2003)]. Here, we generalize the approach to
higher excitedS states, which in contrast to the 1S and 2S states can decay toP states via the electric-dipole
sE1d channel. The more complex structure of the excited-state wave functions and the necessity to subtract
P-state poles lead to additional calculational problems. In addition to the calculation of the excited-state
two-loop energy shift, we investigate the ambiguity in the energy level definition due to squared decay rates.

DOI: 10.1103/PhysRevA.70.052108 PACS number(s): 12.20.Ds, 31.30.Jv, 06.20.Jr, 31.15.2p

I. INTRODUCTION

Both the experimental and the theoretical study of radia-
tive corrections to bound-state energies have been the subject
of a continued endeavor over the last decades(for topical
reviews see[1–4]). Simple atomic systems like atomic hy-
drogen, and heliumlike or lithiumlike systems, provide a
testbed for our understanding of the fundamental interactions
of light and matter, including the intricacies of the renormal-
ization procedure and the complexities of the bound-state
formalism. One of the historically most problematic correc-
tions for bound states in hydrogenlike systems is the two-
loop self-energy(2LSE) effect (relevant Feynman diagrams
in Fig. 1), and this correction will be the subject of the cur-
rent paper.

Regarding self-energy calculations, two different ap-
proaches have been developed for hydrogenlike systems:(i)
the (semi)analytic approach, which is the so-calledZa ex-
pansion and in which the radiative corrections are expressed
as a semianalytic series expansion in the quantitiesZa and
lnfsZad−2g, and (ii ) the numerical approach, which avoids
this expansion and leads to excellent accuracy for systems
with a high nuclear charge number. Over the last couple of
years, a number of calculations have been reported that profit
from recently developed numerical algorithms and an im-
proved physical understanding of the problem at hand. These
have led to numerical results even at low nuclear charge
number[5–7].

Within approach(i), a number of calculations have re-
cently been reported which rely on a separation of the energy
scale(s) of the virtual photon(s) into high- and low-energy
domains(see, e.g.,[9, Chap. 123], [10, Chap. 7] and [11]).
This has recently been generalized to two-loop corrections
[12,13]. Also, there have been attempts to enhance our un-
derstanding of logarithmic corrections in higher orders of the
Za expansion by renormalization-group techniques[14,15].

In the current paper, we discuss the evaluation of a spe-
cific two-loop correction, which can quite naturally be re-
ferred to as the two-loop generalization of the Bethe loga-
rithm, for higher excitedS states(see also Fig. 2). The

calculation is carried out for the dominant nonlogarithmic
contribution to the two-loop self-energy shift of order
a2 sZad6 mc2, wheremc2 is the rest energy of the electron
(m is the rest mass), a is the fine-structure constant, andZ is
the nuclear charge number.

The two-loop Bethe logarithm is formally of the same
order of magnitudefa2sZad6 mc2g as a specific set of two-
loop corrections which are mediated by squared decay rates
and whose physical interpretation has been shown to be lim-
ited by the predictive power of the Gell-Mann–Low theorem
on which bound-state calculations are usually based[16]. For
excitednSstatessnù3d, the problematic squared decay rates
lead to an ambiguity which we assign to the two-loop Bethe
logarithm as a further theoretical source of uncertainty. Be-
yond the order ofa2 sZad6 mc2, the definition of an atomic
energy level becomes ambiguous, and the evaluation of ra-
diative corrections to energy levels has to be augmented by a
more complete theory of the line shape[16–22], with the 1S
state being the only true asymptotic state and therefore—in a

FIG. 1. Two-photon processes may be interpreted in terms of
Feynman diagrams. The double line denotes the bound-electron
propagator. In the figure, we display the crossed-loop(A), the rain-
bow (B), and the loop-after-loop(C) diagram.
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strict sense—the only validin andout state in the calculation
of S-matrix-type amplitudes [16]. Further interesting
thoughts on questions related to line-shape profiles can be
found in [23,24]. It had also been pointed out in Sec. VI of
[25] that the asymmetry of the natural line shape has to be
considered at the ordera8.

It is tempting to ask how one may intuitively understand
the slow convergence of theZa expansion of the two-loop
energy shift. As pointed out in[3], terms of different order in
theZa expansion have rather distinct physical origins. In the
order a2 sZad4 mc2, there are two corrections, both arising
from hard (high-energy) virtual photons. These correspond,
respectively, to the infraredconvergentslope of the two-loop
electron Dirac form factor and to a two-loop anomalous
magnetic moment correction. The term of order
a2 sZad5 mc2 may also be computed without any consider-
ation of low-energy virtual quanta[3,11,26–28]. The terms
of ordera2 sZad6 mc2 are not the leading terms arising from
the two-loop self-energy shifts. Logarithmic correction terms
of ordera2 sZad6 lnifsZad−2gmc2 si =1,2,3d have been con-
sidered in[12,29]. It is only at the order ofa2 sZad6 mc2 that
the low-energy virtual photons begin to contribute to the hy-
drogenic energy shift(s) of S states. They do so quite signifi-
cantly, enhanced by the triple logarithmsi =3d and a surpris-
ingly large coefficient of the single logarithm(i =1), as
shown in[12]. It is therefore evident that we need to gain an
understanding of all logarithmic and nonlogarithmic terms
si =0,1,2,3d of ordera2sZad6 lnifsZad−2gmc2 before any re-
liable prediction for the two-loop bound-state correction can
be made even at low nuclear charge number.

An interesting observation can be made based on the fact
that the imaginary part of the(nonrelativistic) one-loop self-

energy gives the leading-order contribution to theE1 one-
photon decay width of excited states[30]. Analogously, it is
precisely the imaginary part of the nonrelativistic two-loop
self-energy which corresponds to the two-photon decay rate
of the 2S state. The 2S two-photon decay rate is of the order
of a2 sZad6 mc2 (see, e.g.,[31–34]). From a nonrelativistic
point of view, the scalinga2 sZad6 mc2 can be seen as some
kind of “natural” order for the two-loop effect. It is the first
order in which logarithms ofZa appear and the first order in
which a matching of low- and high-energy contributions is
required. This is also reflected in the properties of the two-
photon decay.

This article is organized as follows. In Sec. II, we review
the status of known two-loop self-energy corrections. The
formulation of the problem in nonrelativistic quantum elec-
trodynamics(NRQED) and calculation is discussed in Sec.
III. Squared decay rates are the subject of Sec. IV, and fur-
ther contributions to the self-energy in the order of
a2 sZad6 mc2 are discussed in Sec. V. Finally, conclusions
are drawn in Sec. VI.

II. KNOWN TWO-LOOP SELF-ENERGY COEFFICIENTS

We work in natural unitss"=c=e0=1d, as is customary in
QED bound-state calculations. The(real part of the) level
shift of a hydrogenic state due to the two-loop self-energy
reads

DESE
s2Ld = Sa

p
D2sZad4 me

n3 HsZad. s1d

For the 2LSE diagrams(see Fig. 1), the first terms of the
semianalytic expansion in powers ofZa and lnfsZad−2g read

HsZad = B40
s2LSEd + sZadB50

s2LSEd + sZad2hB63
s2LSEd In3sZad−2

+ B62
s2LSEd In2sZad−2 + B61

s2LSEd InsZad−2 + B60
s2LSEdj.

s2d

The functionHsZad is dimensionless. We ignore unknown
higher-order terms in theZa expansion and focus on a spe-
cific numerically large contribution toB60

s2LSEd given by the
two-loop Bethe logarithm. We also keep the upper index
(2LSE) in order to distinguish the two-loop self-energy con-
tributions to the analytic coefficients from the self-energy
vacuum-polarization (SEVP) effects [12,35] and the
vacuum-polarization insertion into the virtual photon line in
the one-loop self-energy(SVPE). By contrast, the sum of
these effects carries no upper index, according to a conven-
tion adopted previously in[12,35]. It has been mentioned
earlier thatB40 and B50 are purely relativistic effects medi-
ated by hard virtual photons. The coefficientB40 in Eq. (2)
involves a Dirac and a Pauli form factor correction and reads
[36]

B40
s2LSEdsnSd = −

163

72
−

85

36
zs2d + 9 Ins2dzs2d −

9

4
zs3d; s3d

the numerical value is 1.409 244. The first relativistic correc-
tion B50

s2LSEdsnSd is known to have a rather large value[26]:

FIG. 2. (Color online) HydrogenicS levels have the same(ra-
dial) symmetry properties as the ground state. The wave function
csrd of an S level therefore depends only on the radial coordinate
r ;Îx2+y2+z2. The functionf6Ssx,yd;e−`

` dz uc6Ssx,y,zdu2 is posi-
tive definite and constitutes effectively an integrated projection of
the 6S electron probability density onto thex-y plane. Indeed, we
plot here the natural logarithm of this function, which is
lnff6Ssx,ydg, as a function of xP f−40 aBohr,40 aBohrg and y
P f−40 aBohr,40 aBohrg. Here, aBohr denotes the Bohr radiusaBohr

=" / samcd=0.529 177 2108s18d310−10 m [8].
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B50
s2LSEdsnSd = − 24.2668s31d. s4d

The triple logarithm in the sixth order ofZa reads

B63snSd = B63
s2LSEdsnSd = −

8

27
. s5d

It has meanwhile been clarified[37–40] that the total value
of this coefficient is the result of subtle cancellations among
the different diagrams displayed in Fig. 1. The double loga-
rithm for nS is given by

B62
s2LSEds1Sd =

16

27
−

16

9
Ins2d = − 0.639 669, s6d

B62
s2LSEdsnSd = B62

s2LSEds1Sd +
16

9
S3

4
+

1

4n2 −
1

n
− Insnd + Csnd

+ CD , s7d

where C denotes the logarithmic derivative of the gamma
function andC=0.577216. . . is Euler’s constant.

The result forB61, restricted to the two-loop diagrams in
Fig. 1, reads[12,35]

B61
s2LSEds1Sd =

5221

1296
+

875

72
zs2d +

9

2
zs2dIn2 −

9

8
zs3d

−
152

27
In 2 +

40

9
In22 +

4

3
Ns1Sd = 49.838 317,

s8d

B61
s2LSEdsnSd = B61

s2LSEds1Sd +
4

3
fNsnSd − Ns1Sdg

+ S80

27
−

32

9
ln2DS3

4
+

1

4n2 −
1

n
− lnsnd

+ Csnd + CD . s9d

We correct here a calculational error in Eq.(7a) of Ref. [35]
where a result of 49.731 651 had been given for
B61

s2LSEds1Sd. However, even with this correction, the result
for B61s1Sd given in Eq.(8) is incomplete because it lacks
contributions from two-Coulomb-vertex diagrams. These
diagrams give rise to an effective interaction proportional to
E2 in the NRQED Hamiltonian and will be discussed in[41].
The additional contribution toB61

s2LSEds1Sd does not affect the
n dependence of theB61 coefficient as indicated in Eq.(9),
nor does it affect the calculation of the two-loop Bethe loga-
rithms presented in this article. Numerical values ofNsnSd
are given in[42], Eq. (12) for n=1, . . . ,8:

Ns1Sd = 17.855 672s1d, s10ad

Ns2Sd = 12.032 209s1d, s10bd

Ns3Sd = 10.449 810s1d, s10cd

Ns4Sd = 9.722 413s1d, s10dd

Ns5Sd = 9.304 114s1d, s10ed

Ns6Sd = 9.031 832s1d, s10fd

Ns7Sd = 8.840 123s1d, s10gd

Ns8Sd = 8.697 639s1d. s10hd

III. TWO-LOOP PROBLEM IN NRQED

Historically, one of the first two-photon problems to be
tackled theoretically in atomic physics has been the two-
photon decay of the metastable 2S level which was treated in
[43,44]. It is this decay channel which limits the lifetime of
the 2S hydrogenic state. We have[31]

t−1 = G = 8.229Z6 s−1 = 1.310Z6 Hz. s11d

The numerical prefactors of the width are different when
expressed in inverse seconds and alternatively in Hz. The
following remarks are meant to clarify this situation as well
as the entries in Table II below. In order to obtain the width
in Hz, one should interpret the imaginary part of the self-
energy[30] as G /2, and do the same conversion as for the
real part of the energy—i.e., divide byh, not ". This gives
the width in Hz. The unit Hz corresponds to cycles per sec-
ond.

In order to obtain the lifetime in inverse seconds, which is
radians per second, one has to multiply the previous result by
a factor of 2p, a result which may alternatively be obtained
by dividing G—i.e., the imaginary part of the energy, by",
not h. The general paradigm is that in order to evaluate an
energy in units of Hz, one should use the relationE=h n,
whereas for a conversion of an imaginary part of an energy
to the inverse lifetime, one should useG=" t−1. As calcu-
lated in Refs.[31,32], the width of the metastable 2Sstate in
atomic hydrogenlike systems is 8.229Z6 s−1 (inverse sec-
onds). At Z=1, this is equivalent to the “famous” value of
1.3 Hz which is nowadays most frequently quoted in the
literature. The lifetime of a hydrogenic 2S level is thus
0.1215Z−6 s. This latter fact has been verified experimen-
tally for ionized helium[45–47].

We now briefly recall the expression for the two-photon
decay involving two emitted photons with polarization vec-
tors«1 and«2, in a two-photon transition from an initial state
ufil to a final stateuf fl. The two-photon decay widthG is
given by [see, for example, Eq.(3) of Ref. [31]]

G =
4

27

a2

p
E

0

vmax

dv1v1
3v2

3UKf fUxi 1

H − E + v2
xiUfiL

+Kf fUxi 1

H − E + v1
xiUfiLU2

, s12d

where v2=vmax−v1 and vmax=E−E8 is the maximum en-
ergy that any of the two photons may have. The Einstein
summation convention is used throughout this article. Note
the identity[48,49]
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Kf fU pi

m

1

H − E + v1

pi

m
UfiL +Kf fU pi

m

1

H − E + v2

pi

m
UfiL

= − v1v2m
2HKf fUxi 1

H − E + v1
xiUfiL

+Kf fUxi 1

H − E + v2
xiUfiLJ , s13d

which is valid at exact resonancev1+v2=Ei −Ef. This iden-
tity permits a reformulation of the problem in the velocity-
gauge as opposed to the length-gauge form.

In a number of cases, the formulation of a quantum elec-
trodynamic bound-state problem may be simplified drasti-
cally when employing the concepts of an effective low-

energy field theory known as nonrelativistic quantum
electrodynamics[50]. The basic idea consists in a correspon-
dence between fully relativistic quantum electrodynamics
and effective low-energy couplings between the electron and
radiation field, which still lead to ultraviolet divergent ex-
pressions. However, the ultraviolet divergences may be
matched against effective high-energy operators, which leads
to a cancellation of the cutoff parameters. Within the context
of the one-loop self-energy problem, a specialized approach
has been discussed in[11,25,51,52]. The formulation of the
two-loop self-energy problem within the context of NRQED
has been discussed in[12]. We denote bypj the Cartesian
components of the momentum operatorp=−i¹. The expres-
sion for the two-loop self-energy shift reads[12,53]

DENRQED= − S 2a

3pm2D2E
0

e1

dv1 v1 E
0

e2

dv2 v2 HKpi 1

H − E + v1
pj 1

H − E + v1 + v2
pi 1

H − E + v2
pjL

+
1

2
Kpi 1

H − E + v1
pj 1

H − E + v1 + v2
pj 1

H − E + v1
piL +

1

2
Kpi 1

H − E + v2
pj 1

H − E + v1 + v2
pj 1

H − E + v2
piL

+Kpi 1

H − E + v1
piS 1

H − E
Dpj 1

H − E + v2
piL −

1

2
Kpi 1

H − E + v1
piLKpjS 1

H − E + v2
D2

piL −
1

2
Kpi 1

H − E + v2
piL

3KpjS 1

H − E + v1
D2

piL− mKpi 1

H − E + v1

1

H − E + v2
piL −

m

v1 + v2
Kpi 1

H − E + v2
piL

−
m

v1 + v2
Kpi 1

H − E + v1
piLJ . s14d

All of the matrix elements are evaluated on the reference
state ufl, for which the nonrelativistic Schrödinger wave
function is employed. The Schrödinger Hamiltonian is de-
noted byH, andE=−sZad2 m/ s2n2d is the Schrödinger en-
ergy of the reference state(n is the principal quantum num-
ber).

Expressions(12) and(13) now follow in a natural way as
the imaginary part generated by the sum of the first three
terms in curly brackets in Eq.(14). Specifically, the poles are
generated uponv2 integration by the propagator

1

H − E + v1 + v2
= o

j

u jlk j u
Ej − E + v1 + v2

, s15d

when E−Ej =v1+v2, which is just the energy conservation
condition for two-photon decay. Of course, other terms in
Eq. (14), not just the first three in curly brackets, may also
generate imaginary parts(especially if the reference state is
an excited state and one-photon decay is possible). The cor-
responding pole terms must be dealt with in a principal-value
prescription if we are interested only in the real part of the
energy shift. ForP states and higher excitedS states, the
remaining imaginary parts find a natural interpretation as ra-

diative correction to the one-photon decay width[54].
From here on we scale the photon frequenciesv1,2 by

vk → vk8 ;
vk

sZad2m
, k = 1,2. s16ad

This scaling, which is convenient for our numerical calcula-
tions, (almost) corresponds to a transition to atomic units
[but with sZad2m=1 instead of a unit Rydberg constant]. The
momentum operator is scaled as

p → p8 ;
p

Za m
s16bd

and becomes a dimensionless quantity. The Schrödinger
Hamiltonian is scaled as

H → H8 ;
H

sZad2 m
. s16cd

The binding energy of the reference state receives a scaling
as
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E → E8 ;
E

sZad2 m
= −

1

2n2 s16dd

and is from now on also a dimensionless quantity(n is the
principal quantum number). The scaled, dimensionless radial
coordinate is obtained as

r → r8 ; Za m r. s16ed

The scaled Green function

G8sv8d =
1

E8 − H8 − v8
s16fd

is also dimensionless. Finally, the quantity

Gred8 s0d = o
u jlÞufl

u jlk j u
E8 − Ej8

s16gd

is the reduced Green function where the reference stateufl is
excluded from the sum over intermediate states. The(scaled

dimensionless) Schrödinger Hamiltonian is then given as
H8=p82/2−1/r8. Scaled quantities will be used from here on
until the end of the current section III, and we will denote the
scaled, dimensionless quantities by primes, for absolute clar-
ity of notation. (Note that in Ref.[55], the corresponding
scaled quantities were denoted by the same symbol as the
dimensionful quantities.) As indicated in[55], the expression
(14) can be rewritten in terms of the scaled quantities as

DENRQED=
4

9
Sa

p
D2

sZad6 mE dv18E dv28fsv18,v28d,

s17d

where the(dimensionless) function fsv18 ,v28d is defined as
[see also Eq.(14)]

fsv18,v28d = v18 v28Fkp8i G8sv18dp8 j G8sv18 + v28dp8i G8sv28dp8 jl +
1

2
kp8i G8sv18dp8 j G8sv18 + v28dp8 j G8sv18dp8il

+
1

2
kp8iG8sv28dp8 j G8sv18 + v28dp8 j G8sv28dp8il + kp8i G8sv18dp8i Gred8 s0dp8 j G8sv28dp8il −

1

2
kp8i G8sv18dp8il

3kp8 j G82sv28dp8il −
1

2
kp8i G8sv28dp8ilkp8 j G82sv18dp8il+ kp8i G8sv18dG8sv28dp8il −

1

v18 + v28
kp8i G8sv28dp8il

−
1

v18 + v28
kp8iG8sv18dp8ilG . s18d

In [54], the corresponding equation(5) has a typographical
error: the termmkp8i G8sv18dG8sv28dp8il should have a plus
instead of a minus sign(seventh term in the square brackets).
In particular, the scaling(16a) leads to a disappearance of the
powers of Za when considering the expression
edv18 v18edv28 v28 fsv18 ,v28d.

First, we fix v18 and integrate overv28. The subtraction
procedure is as follows. We need to subtract the contribution
from the following terms that lead to divergent expressions
as v28→`. We therefore expandfsv18 ,v28d for large v28 at
fixed v18. The asymptotics read[55]

fsv18,v28d = asv18d +
bsv18d

v28
+ . . . , s19d

where the further terms in the expansion offsv18 ,v28d for
v28→` lead to convergent expressions when integrated over
v28 in the region of largev28. The leading coefficient is

asv18d = v18Kp8i H8 − E8

sH8 − E8 + v18d
2p8iL , s20d

and the second reads

bsv18d = v18 dWHKp8i 1

E8 − sH8 + v18d
p8iLJ , s21d

where bydW we denote the first-order correction to the quan-
tity in curly brackets obtained via the action of the scaled,
dimensionless, local potential:

W=
p ds3dsrd
sZad3 m3 = p ds3dsr8d, s22d

i.e., by the replacements[see Eq.(16f)],

H8 → H8 + W, s23ad

ufl → ufl + udfl, s23bd

E8 → E8 + dE8. s23cd

Here

dE8 = kWl, udfl = Gred8 s0dWufl. s24d

The correction(21) has been calculated for excitedS states
in Ref. [42].
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We are interested in evaluating the constant termgsv18d in
the integral offsv18 ,v28d in the rangev28P s0,Ld at fixedv18
for largeL:

E
0

L

dv28fsv18,v28d = asv18dL + bsv18dln L + gsv18d,

s25ad

where we neglect terms that vanish asL→`. This equation
provides an implicit definition ofgsv18d as the constant term
which results in the limitL→0. The constant term may be
evaluated as

gsv18d = I1 + I2 + I3, s25bd

where

I1 =E
0

M

dv28 fsv18,v28d, s26ad

I2 =E
M

`

dv28F fsv18,v28d − asv18d −
bsv18d

v28
G , s26bd

I3 = − asv18dM − bsv18dln M , s26cd

with arbitraryM [the result forgsv18d is independent ofM].
Sample values of theg function for nS states are given in
Table I. The sign of theI3 term (cf. [55], Eq. (8c)) is deter-
mined by the necessity of subtracting the integral of the sub-
traction term[second term in the integrand Eq.(26b)], at the
lower limit of integrationM. In both thev18 as well as thev28
integrations, there is a further complication due to bound-
state poles(P states) which need to be considered for higher
excited nS states(nù3). In the current section, we com-
pletely ignore the imaginary parts and carry out all integra-
tions with a principal-value prescription.Idem est, we use the
prescriptionsM .ad

E
0

M

dv8
1

sv8 − ad
→ InSM − a

a
D . s27d

For double poles, which originate from some of the terms in
Eq. (14), the appropriate integration prescription is as fol-
lows:

E
0

M

dv8
1

sv8 − ad2 → M

asa − Md
. s28d

Even if M .a, this prescription leads to a finite result which
is real rather than complex. The same result can also be
obtained under a symmetric deformation of the integration
contour into the complex plane. Analogous integration pre-
scriptions have been used in[25,51]. Double poles normally
lead to nonintegrable singularities and give rise to serious
concern. It is therefore necessary to ask how these terms
originate in the context of the current calculation. To answer
this question it is useful to remember that expression(14) is
obtained by perturbation theory in powers of the nonrelativ-
istic QED interaction Lagrangian; an expansion in powers of
the interaction is, however, not allowed when we are work-
ing close to a resonance of the unperturbed atomic Green
function—i.e., close to a bound-state pole. The double poles
incurred by this expansion find a naturala posteriori treat-
ment by the prescriptions(27) and (28) above. In general,
double poles as encountered here and previously in[25,51]
originate whenever we work with(i) excited states which can
decay throughE1 one-photon emission and(ii ) propagators
are perturbatively expanded near bound-state poles.

The leading terms in the asymptotics ofgsv18d for largev18
read[55]

gsv18d =
1

n3FA ln v18 + B + C
lnsv18d
Îv18

+ D
1

Îv18
+ E

ln2sv18d
v18

+ F
1

v18
G + ¯ , s29d

where

A = − 4, s30ad

B = 2fln 2 − 1 − ln k0snSdg, s30bd

C = 4 Î2, s30cd

D = 4Î2 s2sln 2 − 1d − pd, s30dd

E = 1, s30ed

TABLE I. Sample values of theg function, defined in Eq.(25a) and (25b), for the nS states withn
=1, . . . ,6. Multiplication by a factor ofn3 approximately accounts for then dependence, in agreement with
the n−3-type scaling of the two-loop correction as implied by Eq.(1).

v g1S 8 g2S 27 g3S 64 g4S 125 g3S 216g6S

0 0.000 00 0.000 00 0.000 0 0.000 0 0.000 0 0.000 0

5 −10.281 60 −10.367 94 −10.450 1 −10.490 8 −10.522 6 −10.546 0

20 −16.560 34 −16.415 97 −16.393 4 −16.385 1 −16.386 1 −16.386 7

80 −22.714 02 −22.439 66 −22.372 0 −22.345 5 −22.332 0 −22.326 3

180 −26.232 35 −25.923 09 −25.848 0 −25.813 6 −25.798 1 −25.789 5
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F = 8 +
3

2
NsnSd + 5p2. s30fd

The higher-order terms in the large-v18 expansion, which are
ignored in Eq.(29), lead to convergent expressions in the
problematic integration regionv18→`. Explicit numerical
values forNsnSd are given in Eq.(10). For 3S and 6S states,
numerical data forg are compared to the leading asymptotics
in Figs. 3 and 4.

The two-loop Bethe logarithm, which is equal to the low-
energy contributionB60

lepsnSd to the coefficientB60
s2LSEd [see

Eq. (2)], can be obtained by considering

E
0

L

dv18 gsv18d, s31d

and subtracting all terms that diverge asL→`, as given by
the leading asymptotics in Eq.(29). Specifically, the integra-
tion procedure is as follows. We define the two-loop Bethe
logarithm as

bLsnSd = n3sJ1 + J2 + J3d, s32d

where

J1 =E
0

N

dv18 gsv18d, s33ad

J2 =E
N

`

dv18Fgsv18d −
1

n3SA ln v18 + B + C
lnsv18d
Îv18

+ D
1

Îv18

+ E
ln2sv18d

v18
+ F

1

v18
G , s33bd

J3 = A Nsln N − 1d + B N+ CÎNsln N − 2d + 2DÎN

+ 2E ÎNf8 + sln N − 4dln Ng + F ln N. s33cd

Again, in analogy to the integration prescription in Eqs.
(25a) and(26), the result forbL is independent of the choice
of N. Our numerical results for the two-loop Bethe logarithm
of 1S and 2S states read(results for 1S and 2S are quoted
from [55])

bLs1Sd = − 81.4s3d, s34ad

bLs2Sd = − 66.6s3d, s34bd

bLs3Sd = − 63.5s6d, s34cd

bLs4Sd = − 61.8s8d, s34dd

bLs5Sd = − 60.6s8d, s34ed

bLs6Sd = − 59.8s8d. s34fd

These results are displayed in Fig. 5.
From here on, we restore in the following formulas the

physical dimensions of all energies and frequencies and re-
voke the scaling introduced in Eq.(16a). Primed quantities
will no longer be used in the following sections of this work.

IV. AMBIGUITY IN THE DEFINITION OF B60

Low [17] was the first to point out that the definition of an
atomic energy level becomes problematic at the order ofa8

[more specifically,a2sZad6m] and that it becomes necessary
at this level of accuracy to consider the contribution of non-
resonant energy levels to the elastic scattering cross section.
In [19], it has been stressed that nonresonant effects are en-
hanced in differential as opposed to total cross section, lead-
ing to corrections of ordera2 sZad4m. Related issues have

FIG. 3. (Color online) Plot of the large-v18 asymptotics ofg [see
Eq. (29)] against numerical data obtained forg3Ssv18d in the range
v18P f20,180g. The numerical data are scaled by a factor of 33

=27. See also Table I and Eq.(25a) whereg is defined. Dimension-
less quantities are displayed in the figure[this statement relates to
both the abscissa as well as the ordinate axis; see also Eq.(16a)].

FIG. 4. (Color online) Large-v18 asymptotics ofg plotted against
numerical data for the 6S state in the rangev18P f20,180g. The
numerical data are scaled by a factor of 63=216. Explicit numerical
sample values forg6Ssv18d can also be found in Table I. The appar-
ent similarity of Figs. 3 and 4 is reflected in the scaled entries in this
table. The difference between the numerical data(solid line) and the
asymptotics(dashed line) is negative. The formula for the large-v18
asymptotics ofg is given in Eqs.(29) and (30). The difference
between the numerical data and the asymptotics gives rise to a
negative contribution to the integralJ2 defined according to Eq.
(33b) and to a negative value for theB60 coefficient[see Eq.(52)
below]. The scaled, primed quantities plotted along both the ab-
scissa as well as the ordinate axis are dimensionless[see also Eq.
(16a)].
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recently attracted some attention(see also the discussion in
Sec. I), and there is even a connection to the two-loop cor-
rections of ordera2sZad6m, as we discuss in the following.
Namely, as pointed out in[16], the two-loop self-energy con-
tains contributions which result from squared decay rates.

For excited reference states, the nonrelativistic two-loop
self-energy(14) contains imaginary contributions which are
generated by both thev1 as well as thev2 integrations. The
imaginary part of the one-photon self-energy is generated by
a pole contribution and leads to the decay rate which is the

imaginary part of the self-energy. Consequently, real contri-
butions to the two-photon self-energy which result as a prod-
uct of two imaginary contributions are naturally referred to
as squared decay rates. These are natural contributions to the
two-loop self-energy shift in the order ofa2sZad6m and can-
not be associated in a unique manner with one and only one
atomic level. Roughly speaking, the problems in the interpre-
tation originate from the fact that the Gell-Mann–Low–
Sucher[56,57] formalism involvesa priori asymptotic states
with an infinite lifetime(vanishing decay rate). Furthermore,
it has been mentioned[20] that problematic issues persist
even if the concept of an atomic energy is generalized to a
resonance with a finite width—i.e., even if the canonical
concept of a pole of the resolvent on the second Riemann
sheet[58,59] is used for the definition of an atomic reso-
nance. In general, the squared decay rates illustrate that we
are reaching the limit of the proper definition of atomic en-
ergy levels in considering higher-order two-loop binding cor-
rections.

In [16], the squared decay rates have been analyzed in
some detail. There are four specific terms out of the nine in
curly brackets in Eq.(14) which give rise to squared decay
rates. We list these terms here with a special emphasis on the
higher excited 3S state, following the notation introduced in
[16]. In the following formulas, the physical dimensions of
all energies and frequencies are restored[cf. Eq. (16a)] and
we have for the first termT1s3Sd, which is the analog of Eq.
(4) of [16]:

T1s3Sd = lim
d→0+

− S 2a

3 p m2D2E
0

e1

dv1 v1 E
0

e2

dv2 v2

3 K3SUpi 1

H − i d − E3S+ v1
pj 1

H − E3S+ v1 + v2
pi 1

H − i d − E3S+ v2
pjU3SL . s35ad

For the analog of Eq.(8) of [16], we have

T2s3Sd = lim
d→0+

− S 2a

3 p m2D2E
0

e1

dv1 v1E
0

e2

dv2 v2K3SUpi 1

H − i d − E3S+ v1
piS 1

H − E3S
D8

pj 1

H − i d − E3S+ v2
pjU3SL ,

s35bd

and we also have[see Eq.(15) of [16]]

T3s3Sd = lim
d→0+

S 2a

3p m2D2E
0

e1

dv1 v1E
0

e2

dv2 v2 3 K3SUpi 1

H − i d − E3S+ v1
piU3SLK3SUpjS 1

H − i d − E3S+ v2
D2

pjU3SL .

s35cd

The last relevant term is[see Eq.(17) of [16]]

T4s3Sd = lim
d→0+

S 2a

3p m2D2E
0

e1

dv1 v1 E
0

e2

dv2 v2 3 K3SUpi 1

H − i d − E3S+ v1

1

H − i d − E3S+ v2
piU3SL . s35dd

FIG. 5. Dependence of the two-loop Bethe logarithmbLsnSd on
the principal quantum numbern. The explicit numerical results[Eq.
(34)] are displayed together with a three-parameter fit of the form
−57.4−13.7/n−10.1/n2 from which one may infer limn→`bLsnSd
=−57s2d. Quantities plotted along the abscissa and the ordinate axis
are (of course) dimensionless.
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Here,H is the Schrödinger Hamiltonian. We now proceed to
analyze the squared decay rates generated by the termsTi
si =1, . . . ,4d in some detail. It should be reemphasized here
that the main contributions to the energy shift generated by
the Ti have already been analyzed in Sec. III. However, the
prescriptions(27) and(28) lead to a complete neglect of the
(squared) imaginary contributions. Consequently, we here
“pick up” only the terms of the “squared-decay” type—i.e.,
the terms generated by the infinitesimal half-circles around
the poles atv1=E3S−E2P and v2=E3S−E2P. For evaluation
of these squared pole terms, specification of the infinitesimal
imaginary part −id is required in order to fix the sign of the
pole contribution. This procedure of extracting squared
imaginary parts leads to the termsCi si =1, . . . ,4d, respec-
tively [60].

We now proceed to analyze the squared decay rates gen-
erated by the termsTi si =1, . . . ,4d in some detail. The term
t1 is due to the diagram with crossed loops in Fig. 1(A). For
the contributionC1s3Sd generated by the poles atv1=E3S

−E2P andv2=E3S−E2P in T1s2Pd, we obtain

C1s3Sd = a2 4

9m4sE3S− E2Pd2uk2Pupu3Slu2

3 K2PUpi 1

H + E3S− 2 E2P
piU2PL

=
25

33 58a2 sZad6 m M1, s36d

where we defineu2Pl to be the state with magnetic quantum
number(angular momentum projection) m=0. This explains
the additional factor of 3 in comparison to Eq.(5) of [16].
The factor originates from the summation over magnetic
quantum numbers of theu2Pl state, and we reemphasize that
we understand byu2Pl only the state with magnetic quantum
number (angular momentum projection) m=0. The matrix
elementM1 reads

M1 =
1

m
K2PUpi 1

H + E3S− 2 E2P
piU2PL = 0.697, s37d

and we have for the well-known dipole matrix element

UK2PU p

m
U3SLU2

=
29 33

510 sZad2. s38d

Note that the contributionC1 lacks the factorsp in the de-
nominator which are characteristic of other two-loop correc-
tions: these are compensated by additional factors ofp in the
numerator that characterize the pole contributions.

The rainbow diagram in Fig. 1(B) with the second loop
inside the first does not create squared imaginary contribu-
tions. From the irreducible part of the loop-after-loop dia-
gram in Fig. 1(C) (we exclude the reference state in the
intermediate electron propagator), the termT2 is obtained.
Again, picking up only those terms which are generated by
the infinitesimal half-circles around the poles atv1=E3S
−E2P and v2=E3S−E2P, we obtain the contributionC2s3Sd
involving squared decay rates:

C2s3Sd = a2 4

9m4sE3S− E2Pd2uk2Pupu3Slu2

3 K2PUpiS 1

H − E3S
D8

piU2PL
=

25

33 58a2 sZad6 m M2, s39d

where the matrix elementM2 reads

M2 =
1

m
K2PUpiS 1

H − E3S
D8

piU2PL = 0.490. s40d

The prime in the reduced Green function indicates that the
3S state is excluded from the sum over intermediate states,
and it should not be confused with the notation used in Sec.
III, where the prime was used to denote scaled dimensionless
instead of dimensionful quantities.

From the derivative term(reducible part of the loop-after-
loop diagram), we obtain

C3s2Pd = − a2 4

3m4sE3S− E2Pduk2Pupu3Slu4

= −
217 33

519 a2 sZad6m. s41d

In order to derive the imaginary parts, one should remember
that the squared propagator originates from a differentiation
of a single propagator with respect to the energy. An integra-
tion by parts is helpful.

The last contribution of the “squared-decay” type—it
originates from the “seagull term” characteristic of
NRQED—isT4. The correspondingC term is

C4s3Sd = − a2 4

3m3sE3S− E2Pd2uk2Pupu3Slu2

= −
25

32 58a2sZad6 m. s42d

Adding all contributions, we obtain a shift of

o
i=1

4

Cis3Sd = Sa

p
D2sZad6 m

33 s− 0.00151d s43d

for the 3S level. The numerical value is tiny; forZ=1 the
shift amounts to only

d2ns3Sd = − 0.00565 Hz. s44d

For the corresponding ambiguous contributions to theB60
coefficient[see Eqs.(2) and (43), we use the notation

d2B60s3Sd = − 0.00151. s45d

For the 4Sstate, we have to take into account the decays into
the 2P and 3P states. For example, the contributionC1s4Sd
reads
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C1s4Sd = a2 4

9m4HsE4S− E2Pd2uk2Pupu4Slu2K2PUpi 1

H + E4S− 2 E2P
piU2PL + sE4S

− E3Pd2uk3Pupu4Slu2K3PUpi 1

H + E4S− 2 E3P
piU3PLJ + a2 8

9m4sE4S− E2PdsE4S− E3Pd

3ReSk4Supju2PlK2PUpi 1

H + E4S− E3P− E2P
piU3PLk3Pupju4SlD = Sa

p
D2sZad6 m

43 s0.00108d. s46d

The sum ofC1,. . .,4 for the 4S state of hydrogenlike systems
with (low) nuclear chargeZ is

o
i=1

4

Cis4Sd = Sa

p
D2sZad6 m

43 s− 0.00613d. s47d

For atomic hydrogensZ=1d, this correction evaluates to

d2ns4Sd = − 0.00964 Hz. s48d

This is numerically larger than the corresponding effect for
3S [see Eq.(44)]. We have

d2B60s4Sd = − 0.00613. s49d

Although self-energy corrections canonically scale asn−3

[see Eq.(1)], the coefficient in this case grows so rapidly
with n that the correction is enhanced for 4S in comparison
to 3S. Further detailed information can be found in Table II.
We also take the opportunity to clarify that numerical values
for squared decay as given in[16] (for 2P and 3P states)
should be understood as given in inverse seconds rather than
Hz (see also the discussion near the beginning of Sec. III).

V. FURTHER CONTRIBUTIONS TO B60

The coefficientB60 can be represented as the sum

B60 = bL + bM + bF + bH + bVP. s50d

The two-loop Bethe logarithmbL comes from the region
where both photon momenta are small and has been the sub-
ject of this work.bM stems from an integration region where

one momentum is large,m and the second momentum is
small. This contribution is given by a Diracd correction to
the Bethe logarithm[see also Eq.(21) and Ref.[42]]. It has
already been derived in[12] but not included in the theoret-
ical predictions for the Lamb shift:

bM =
10

9
NsnSd. s51d

As has already been mentioned in[55], the contributionsbF
andbH originate from a region where both photon momenta
are large,m, and the electron momentum is small and large
respectively. Finally,bVP is a contribution from diagrams that
involve a closed fermion loop. None of these effects have
been calculated as yet. On the basis of our experience with
the one- and two-loop calculations we estimate the magni-
tude of these uncalculated terms to be of the order of 15%.
For higher excited statess3S, . . . ,6Sd, the 15% uncertainty
due to unknown contributions is larger than the ambiguity
d2B60 listed in Table II.

Concerning logarithmic two-loop vacuum-polarization ef-
fects [12], we mention that the contribution of the two-loop
self-energy diagrams toB61 for the 1S state reads 49.8,
whereas the diagrams that involve a closed fermion loop
amount to 0.6. Concerning the one-loop higher-order binding
correctionA60s1Sd (analog ofB60) it is helpful to consider
that the result for 1S is −30.92415s1d (see Refs.[5,12]); this
is the sum of a contribution due to low-energy virtual pho-
tons of −27.3[[12], Eq. (5.116)] and a relatively small high-

TABLE II. Squared decay rates are extracted as the squared bound-state pole terms from the termsT1—T4 in Eqs.(35a)–(35d). Explicit
formulas(3Sstate) for the termsCi si =1, . . . ,4d are given in Eqs.(36)–(42). All contributionsCi scale asZ6, whereas the decay ratesG given
in the eighth column scale asZ4. Numerical values are given forZ=1. The decay rates may be derived in the standard way[see the derivation
of Fermi’s golden rule as given in Eqs.(2.103)–(2.118) of [61]]. We only indicate approximate values forG, without relativistic corrections.
For the 2P1/2 states, a detailed calculation leads toGs2P1/2d=0.9970942Z4 MHz [53]. For any given state, the squared decay ratesd2n are
about seven to eight orders of magnitude smaller than the widthG. All states listed in the table may decay via theE1 mode, wherefore the
decay rates as well as the ambiguitiesd2n are formally of the same order of magnitude[asZad4m anda2sZad6m, respectively]. However, the
numerical coefficients differ by two orders of magnitude;S states typically have a much longer lifetime.

State C1 C2 C3 C4 d2n=oi=1
4 Ci d2B60 G t

2P 1.42208 Hz 2.06790 Hz −1.00843 Hz −4.84593 Hz −2.36438 Hz −0.18789 99.76 MHz 0.16310−8 s

3P 0.50353 Hz 0.06037 Hz −0.12787 Hz −2.00952 Hz −1.57349 Hz −0.42202 30.21 MHz 0.53310−8 s

3S 0.00210 Hz 0.00148 Hz −0.00018 Hz −0.00565 Hz −0.00564 Hz −0.00151 1.00 MHz 15.83310−8 s

4S 0.00170 Hz −0.00100 Hz −0.00015 Hz −0.01019 Hz −0.00964 Hz −0.00613 0.70 MHz 22.65310−8 s
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energy term of about −3.7[[12], Eq. (6.102)]. In estimating
these contributions, we follow[55].

This leads to the following overall result for theB60 co-
efficients, where the first two results(1S and 2S) are quoted
from [55], and the latter results are obtained within the cur-
rent investigation:

B60s1Sd = − 61.6s3d ± 15 % , s52ad

B60s2Sd = − 53.2s3d ± 15 % , s52bd

B60s3Sd = − 51.9s6d ± 15 % , s52cd

B60s4Sd = − 51.0s8d ± 15 % , s52dd

B60s5Sd = − 50.3s8d ± 15 % , s52ed

B60s6Sd = − 49.8s8d ± 15 % . s52fd

The values are in numerical agreement with those used in
latest adjustment of the fundamental physical constants[8];
these are based on an extrapolation of the results obtained for
n=1,2 [55] to highern, using a functional forma+b/n, with
an extra uncertainty added in order to account for the some-
what incomplete form of the functional form used in the
extrapolation. We here confirm the validity of the approach
taken in[8] by our explicit numerical calculation.

VI. CONCLUSIONS

The calculation of binding two-loop self-energy correc-
tions has received considerable attention within the last de-
cade[26,28,62]. As outlined in Sec. I, there is an intuitive
physical reason why a reliable understanding of the two-loop
energy shift requires the calculation of all logarithmic as well
as nonlogarithmic corrections through the order of
a2 sZad6 m. It is the order ofa2 sZad6 m which is the “natu-
ral” order of magnitude for the two-loop self-energy effect
from the point of view of nonrelativistic quantum electrody-
namics; i.e., low-energy virtual photons begin to contribute
at this order only, whereas the effects of lower order
[a2 sZad4 m and a2 sZad5 m] are mediated exclusively by
high-energy virtual quanta.

In Sec. II, we recall known lower-order coefficients forS
states, as well as logarithmic corrections. The formulation of
the problem within NRQED[50] and the actual numerical
evaluation of the two-loop Bethe logarithmsbL for higher
excitedSstates is discussed in Sec. III. Numerical results for
bL are given in Eq.(34). As shown in Fig. 5, the dependence
of these results on the principal quantum number follows a
pattern recently observed quite universally for binding cor-
rections to radiative bound-state energy shifts[42,63]. This
permits an extrapolation of the results to higher principal
quantum numbers, which is useful for the determination of
fundamental constants[8].

There is a certain ambiguity in the definition of the two-
loop nonlogarithmic coefficientB60 due to squared decay
rates(Sec. IV); this aspect has previously been considered in
[16] for P states. Here, the treatment of the squared decay

rates is generalized to excitedS states. The ambiguity, while
formally of the order ofa2 sZad6 m, is shown to be barely
significant forSstates(see Table II), due to small prefactors.

Numerical estimates of the totalB60 coefficient for excited
nS statessn=1, . . . ,6d are given in Eq.(52). These results
improve our theoretical knowledge of the hydrogen spec-
trum. On the occasion, we would also like to mention ongo-
ing efforts regarding the calculation of binding three-loop
corrections of ordera3 sZad5 [64]. At Z=1, these binding
three-loop corrections are of the same order of magnitude
sa8d as the two-loop Bethe logarithms discussed here. There
is considerable hope that in the near future, our possibilities
for a self-consistent interpretation of high-precision laser
spectroscopic experiments may be enhanced significantly via
a combination of ongoing experiments at Paul Scherrer In-
stitute (PSI), Laboratoire Kastler-Brossel, and Max-Planck-
Institute for Quantum Optics, whose purpose is a much im-
proved Lamb-shift measurement(1S-2S and 1S-3S
transitions combined with an improved knowledge of the
proton charge radius as derived from the PSI muonic hydro-
gen experiment). The comparison of numerous transitions in
hydrogenlike systems with theory may also help in this di-
rection as it allows for an evaluation of the proton charge
radius using an overdetermined system of equations, pro-
vided that theoretical Lamb-shift values are used as input
data for the systems of equations rather than variables for
which the systems should be solved[see, e.g., Eqs.(2) and
(3) of [65]].

Finally, we would like comment on the relation of the
analytic approach(Za expansion) pursued here and numeri-
cal calculations of the self-energy at low nuclear chargeZ,
which avoid theZa expansion and which have been carried
out on the one-loop level for high nuclear charge numbersZ
[66], with recent extensions to the numerically more prob-
lematic regime of lowZ [5]. One might note that tradition-
ally, the most accurate Lamb-shift values at lowZ have been
obtained via a combination of analytic and numerical
techniques—i.e., by using both numerical data obtained for
high Z and known analytic coefficients from theZa expan-
sion [67]. (This is one of the main motivations for pursuing
both numerical and analytic calculations of the two-loop self
energy, in addition to the obvious requirement for an addi-
tional cross-check of the two distinct approaches.) The gen-
eral paradigm is the extrapolation of the self-energyremain-
der function obtained from high-Z numerical data after the
subtraction of known analytic terms; in many cases this ex-
trapolation leads to more accurate predictions for the remain-
der at lowZ than the simple truncation of theZa expansion
alone. Various algorithms have been developed for this pur-
pose(see, e.g.,[67,68]). Indeed, thecombinationof analytic
and numerical techniques has recently proven to be useful in
the context of binding corrections to the one-loop bound-
electrong factor [69], although direct numerical evaluations
at Z=1 had been available before[7]. Still, it was possible to
improve the theoretical predictions for theg-factor self-
energy remainder function at lowZ by an order of magnitude
via a combination of the analytic and numerical approaches,
in addition to the fact that an important cross-check of the
analytic and the numerical approaches versus each other be-
came feasible.
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