49 research outputs found

    Complete blockage of the mevalonate pathway results in male gametophyte lethality

    Get PDF
    Plants have two isoprenoid biosynthetic pathways: the cytosolic mevalonate (MVA) pathway and the plastidic 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Since the discovery of the MEP pathway, possible metabolic cross-talk between these pathways has prompted intense research. Although many studies have shown the existence of such cross-talk using feeding experiments, it remains to be determined if native cross-talk, rather than exogenously applied metabolites, can compensate for complete blockage of the MVA pathway. Previously, Arabidopsis mutants for HMG1 and HMG2 encoding HMG-CoA reductase (HMGR) were isolated. Although it was shown that HMGR1 is a functional HMGR, the enzyme activity of HMGR2 has not been confirmed. It is demonstrated here that HMG2 encodes a functional reductase with similar activity to HMGR1, using enzyme assays and complementation experiments. To estimate the contribution of native cross-talk, an attempt was made to block the MVA pathway by making double mutants lacking both HMG1 and HMG2, but no double homozygotes were detected in the progeny of self-pollinated HMG1/hmg1 hmg2/hmg2 plants. hmg1 hmg2 male gametophytes appeared to be lethal based on crossing experiments, and microscopy indicated that ∼50% of the microspores from the HMG1/hmg1 hmg2/hmg2 plant appeared shrunken and exhibited poorly defined endoplasmic reticulum membranes. In situ hybridization showed that HMG1 transcripts were expressed in both the tapetum and microspores, while HMG2 mRNA appeared only in microspores. It is concluded that native cross-talk from the plastid cannot compensate for complete blockage of the MVA pathway, at least during male gametophyte development, because either HMG1 or HMG2 is required for male gametophyte development

    Genome-wide identification and characterization of novel genes involved in terpenoid biosynthesis in Salvia miltiorrhiza

    Get PDF
    Terpenoids are the largest class of plant secondary metabolites and have attracted widespread interest. Salvia miltiorrhiza, belonging to the largest and most widely distributed genus in the mint family, is a model medicinal plant with great economic and medicinal value. Diterpenoid tanshinones are the major lipophilic bioactive components in S. miltiorrhiza. Systematic analysis of genes involved in terpenoid biosynthesis has not been reported to date. Searching the recently available working draft of the S. miltiorrhiza genome, 40 terpenoid biosynthesis-related genes were identified, of which 27 are novel. These genes are members of 19 families, which encode all of the enzymes involved in the biosynthesis of the universal isoprene precursor isopentenyl diphosphate and its isomer dimethylallyl diphosphate, and two enzymes associated with the biosynthesis of labdane-related diterpenoids. Through a systematic analysis, it was found that 20 of the 40 genes could be involved in tanshinone biosynthesis. Using a comprehensive approach, the intron/exon structures and expression patterns of all identified genes and their responses to methyl jasmonate treatment were analysed. The conserved domains and phylogenetic relationships among the deduced S. miltiorrhiza proteins and their homologues isolated from other plant species were revealed. It was discovered that some of the key enzymes, such as 1-deoxy-D-xylulose 5-phosphate synthase, 4-hydroxy-3-methylbut-2-enyl diphosphate reductase, hydroxymethylglutaryl-CoA reductase, and geranylgeranyl diphosphate synthase, are encoded by multiple gene members with different expression patterns and subcellular localizations, and both homomeric and heteromeric geranyl diphosphate synthases exist in S. miltiorrhiza. The results suggest the complexity of terpenoid biosynthesis and the existence of metabolic channels for diverse terpenoids in S. miltiorrhiza and provide useful information for improving tanshinone production through genetic engineering

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Observation of gravitational waves from the coalescence of a 2.5–4.5 M ⊙ compact object and a neutron star

    Get PDF
    We report the observation of a coalescing compact binary with component masses 2.5–4.5 M ⊙ and 1.2–2.0 M ⊙ (all measurements quoted at the 90% credible level). The gravitational-wave signal GW230529_181500 was observed during the fourth observing run of the LIGO–Virgo–KAGRA detector network on 2023 May 29 by the LIGO Livingston observatory. The primary component of the source has a mass less than 5 M ⊙ at 99% credibility. We cannot definitively determine from gravitational-wave data alone whether either component of the source is a neutron star or a black hole. However, given existing estimates of the maximum neutron star mass, we find the most probable interpretation of the source to be the coalescence of a neutron star with a black hole that has a mass between the most massive neutron stars and the least massive black holes observed in the Galaxy. We provisionally estimate a merger rate density of 55−47+127Gpc−3yr−1 for compact binary coalescences with properties similar to the source of GW230529_181500; assuming that the source is a neutron star–black hole merger, GW230529_181500-like sources may make up the majority of neutron star–black hole coalescences. The discovery of this system implies an increase in the expected rate of neutron star–black hole mergers with electromagnetic counterparts and provides further evidence for compact objects existing within the purported lower mass gap

    Subcellular evidence for the involvement of peroxisomes in plant isoprenoid biosynthesis

    No full text
    The role of peroxisomes in isoprenoid metabolism, especially in plants, has been questioned in several reports. A recent study of Sapir-Mir et al.1 revealed that the two isoforms of isopentenyl diphosphate (IPP) isomerase, catalyzing the isomerisation of IPP to dimethylallyl diphosphate (DMAPP) are found in the peroxisome. In this addendum, we provide additional data describing the peroxisomal localization of 5-phosphomevalonate kinase and mevalonate 5-diphosphate decarboxylase, the last two enzymes of the mevalonic acid pathway leading to IPP.2 This finding was reinforced in our latest report showing that a short isoform of farnesyl diphosphate, using IPP and DMAPP as substrates, is also targeted to the organelle.3 Therefore, the classical sequestration of isoprenoid biosynthesis between plastids and cytosol/ER can be revisited by including the peroxisome as an additional isoprenoid biosynthetic compartment within plant cells

    Analysis of the expression of terpene synthase genes in relation to aroma content in two aromatic Vitis vinifera varieties

    No full text
    Grape (Vitis vinifera L.) flavour management in the vineyard requires knowledge of the derivation of individual flavour and aroma characteristics. Some of the most prevalent wine grape aroma constituents are terpenoids and this study represents a wide report about grape terpene synthase (TPS) gene transcript profiling in different tissues of two aromatic grapevine varieties, particularly flowers and developing berries, correlated with the accumulation patterns of free aroma compounds. All investigated genes belonging to the TPS-a and TPS-b subfamilies reached the highest expression in accordance with the peak of accumulation of the respective compounds. In the TPS-g subfamily, only one of the genes characterised for linalool synthases showed major transcript abundance in ripening berries, whereas the only geraniol synthase had a peak of expression in green berries and at the beginning of ripening, when geraniol concentration started to increase and overcome the linalool concentration. The genes identified in this study as being mainly responsible for linalool and geraniol synthesis during berry development, and the phenological phases in which they are mostly expressed, should be of interest to viticulturists and wine makers to improve decision making along the chain of production
    corecore