34 research outputs found

    Abstracts from the Food Allergy and Anaphylaxis Meeting 2016

    Get PDF

    Data from: Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life-cycle in field-grown rice

    No full text
    Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle is however, not well understood. Here, we use dense temporal sampling of 1588 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (Oryza sativa) over the course of three consecutive growing seasons, as well as two sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth, then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forests approach. The age-prediction models revealed that drought stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle

    Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice

    No full text
    <div><p>Bacterial communities associated with roots impact the health and nutrition of the host plant. The dynamics of these microbial assemblies over the plant life cycle are, however, not well understood. Here, we use dense temporal sampling of 1,510 samples from root spatial compartments to characterize the bacterial and archaeal components of the root-associated microbiota of field grown rice (<i>Oryza sativa</i>) over the course of 3 consecutive growing seasons, as well as 2 sites in diverse geographic regions. The root microbiota was found to be highly dynamic during the vegetative phase of plant growth and then stabilized compositionally for the remainder of the life cycle. Bacterial and archaeal taxa conserved between field sites were defined as predictive features of rice plant age by modeling using a random forest approach. The age-prediction models revealed that drought-stressed plants have developmentally immature microbiota compared to unstressed plants. Further, by using genotypes with varying developmental rates, we show that shifts in the microbiome are correlated with rates of developmental transitions rather than age alone, such that different microbiota compositions reflect juvenile and adult life stages. These results suggest a model for successional dynamics of the root-associated microbiota over the plant life cycle.</p></div

    Spatial turnover of soil viral populations and genotypes overlain by cohesive responses to moisture in grasslands

    No full text
    Viruses shape microbial communities, food web dynamics, and carbon and nutrient cycling in diverse ecosystems. However, little is known about the patterns and drivers of viral community composition, particularly in soil, precluding a predictive understanding of viral impacts on terrestrial habitats. To investigate soil viral community assembly processes, here we analyzed 43 soil viromes from a rainfall manipulation experiment in a Mediterranean grassland in California. We identified 5,315 viral populations (viral operational taxonomic units [vOTUs] with a representative sequence ≥10 kbp) and found that viral community composition exhibited a highly significant distance-decay relationship within the 200-m2 field site. This pattern was recapitulated by the intrapopulation microheterogeneity trends of prevalent vOTUs (detected in ≥90% of the viromes), which tended to exhibit negative correlations between spatial distance and the genomic similarity of their predominant allelic variants. Although significant spatial structuring was also observed in the bacterial and archaeal communities, the signal was dampened relative to the viromes, suggesting differences in local assembly drivers for viruses and prokaryotes and/or differences in the temporal scales captured by viromes and total DNA. Despite the overwhelming spatial signal, evidence for environmental filtering was revealed in a protein-sharing network analysis, wherein a group of related vOTUs predicted to infect actinobacteria was shown to be significantly enriched in low-moisture samples distributed throughout the field. Overall, our results indicate a highly diverse, dynamic, active, and spatially structured soil virosphere capable of rapid responses to changing environmental conditions
    corecore