2,183 research outputs found
Thermal Properties and Segregation Behavior of Pt Nanowires Modified with Au, Ag, and Pd Atoms: A Classical Molecular Dynamics Study
Platinum nanowires (NWs) have been reported to be catalytically active toward the oxygen reduction reaction (ORR). The edge modification of Pt NWs with metals M (M = Au, Ag, or Pd) may have a positive impact on the overall ORR activity by facilitating diffusion of adsorbed oxygen, Oads, and hydroxyl groups, OHads, between the {001} and {111} terraces. In the present study, we have employed classical molecular dynamics simulations to investigate the segregation behavior of Au, Ag, and Pd decorating the edges of Pt NWs. We observe that, under vacuum conditions, Pd prefers to diffuse toward the core rather than stay on the NW surface. Ag and Au atoms are mobile at temperatures as low as 900 K; they remain on the surface but do not appear to be preferentially more stable at edge sites. To effect segregation of Au and Ag atoms toward the edge, we propose annealing in the presence of different reactive gas environments. Overall, our study suggests potential experimental steps required for the synthesis of Pt nanowires and nanoparticles with improved Oads and OHads interfacet diffusion rates and consequently an improved ORR activity
Formative evaluation of electricity distribution utilities using data envelopment analysis
The use of Data Envelopment Analysis (DEA) in the electricity distribution sector has been prolific in the number of papers published in research journals. However, while numerous studies have been documented, they have mostly been summative. Their aim has been predominantly descriptive and
classificatory. This paper argues that evaluations of a formative nature are more effective than summative studies in promoting a better understanding of the structures and processes of electricity
distribution utilities and, consequently, are more appropriate to contribute to performance improvement.
To illustrate the use of DEA for formative evaluation, and highlight some of the difficulties of using DEA in practice, this paper compares the cost-efficiency of the Portuguese electricity distribution companies from 2002 to 2006. A dynamic analysis using Malmquist Indices is also conducted in order to evaluate the changes in productivity over this period. Our analysis shows that the application of DEA
for formative purposes meets some difficulties. In particular it shows that while the modelling of productivity/efficiency scores using DEA is relatively straightforward, it is comparatively more difficult to develop models that are economically valid and that produce results with face validity. On the basis of the insights derived from this analysis, the paper provides some recommendations regarding the successful application of DEA for performance improvement
Ensemble Learning for Low-Level Hardware-Supported Malware Detection
Abstract. Recent work demonstrated hardware-based online malware detection using only low-level features. This detector is envisioned as a first line of defense that prioritizes the application of more expensive and more accurate software detectors. Critical to such a framework is the detection performance of the hardware detector. In this paper, we explore the use of both specialized detectors and ensemble learning tech-niques to improve performance of the hardware detector. The proposed detectors reduce the false positive rate by more than half compared to a single detector, while increasing the detection rate. We also contribute approximate metrics to quantify the detection overhead, and show that the proposed detectors achieve more than 11x reduction in overhead compared to a software only detector (1.87x compared to prior work), while improving detection time. Finally, we characterize the hardware complexity by extending an open core and synthesizing it on an FPGA platform, showing that the overhead is minimal.
Artificial Lighting as a Vector Attractant and Cause of Disease Diffusion
BACKGROUND: Traditionally, epidemiologists have considered electrification to be a positive factor. In fact, electrification and plumbing are typical initiatives that represent the integration of an isolated population into modern society, ensuring the control of pathogens and promoting public health. Nonetheless, electrification is always accompanied by night lighting that attracts insect vectors and changes people's behavior. Although this may lead to new modes of infection and increased transmission of insect-borne diseases, epidemiologists rarely consider the role of night lighting in their surveys. OBJECTIVE: We reviewed the epidemiological evidence concerning the role of lighting in the spread of vector-borne diseases to encourage other researchers to consider it in future studies. DISCUSSION: We present three infectious vector-borne diseases-Chagas, leishmaniasis, and malaria-and discuss evidence that suggests that the use of artificial lighting results in behavioral changes among human populations and changes in the prevalence of vector species and in the modes of transmission. CONCLUSION: Despite a surprising lack of studies, existing evidence supports our hypothesis that artificial lighting leads to a higher risk of infection from vector-borne diseases. We believe that this is related not only to the simple attraction of traditional vectors to light sources but also to changes in the behavior of both humans and insects that result in new modes of disease transmission. Considering the ongoing expansion of night lighting in developing countries, additional research on this subject is urgently needed.National Council for Scientific and Technological Development (CNPq), Brasilia, Brazi
Benefits and risks of the hormetic effects of dietary isothiocyanates on cancer prevention
The isothiocyanate (ITC) sulforaphane (SFN) was shown at low levels (1-5 ”M) to promote cell proliferation to 120-143% of the controls in a number of human cell lines, whilst at high levels (10-40 ”M) it inhibited such cell proliferation. Similar dose responses were observed for cell migration, i.e. SFN at 2.5 ”M increased cell migration in bladder cancer T24 cells to 128% whilst high levels inhibited cell migration. This hormetic action was also found in an angiogenesis assay where SFN at 2.5 ”M promoted endothelial tube formation (118% of the control), whereas at 10-20 ”M it caused significant inhibition. The precise mechanism by which SFN influences promotion of cell growth and migration is not known, but probably involves activation of autophagy since an autophagy inhibitor, 3-methyladenine, abolished the effect of SFN on cell migration. Moreover, low doses of SFN offered a protective effect against free-radical mediated cell death, an effect that was enhanced by co-treatment with selenium. These results suggest that SFN may either prevent or promote tumour cell growth depending on the dose and the nature of the target cells. In normal cells, the promotion of cell growth may be of benefit, but in transformed or cancer cells it may be an undesirable risk factor. In summary, ITCs have a biphasic effect on cell growth and migration. The benefits and risks of ITCs are not only determined by the doses, but are affected by interactions with Se and the measured endpoint
- âŠ