7,184 research outputs found

    Metabolic turnover and dynamics of modified ribonucleosides by ¹³C labeling

    Get PDF
    Tandem mass spectrometry (MS/MS) is an accurate tool to assess modified ribonucleosides and their dynamics in mammalian cells. However, MS/MS quantification of lowly abundant modifications in non-ribosomal RNAs is unreliable, and the dynamic features of various modifications poorly understood. Here, we developed a 13C labeling approach, called 13C-dynamods, to quantify the turnover of base modifications in newly transcribed RNA. This turnover-based approach helped to resolve mRNA from ncRNA modifications in purified RNA or free ribonucleoside samples, and showed the distinct kinetics of the N6-methyladenosine (m6A) versus 7-methylguanosine (m7G) modification in polyA+-purified RNA. We uncovered that N6,N6-dimethyladenosine (m62A) exhibits distinct turnover in small RNAs and free ribonucleosides when compared to known m62A-modified large rRNAs. Finally, combined measurements of turnover and abundance of these modifications informed on the transcriptional versus posttranscriptional sensitivity of modified ncRNAs and mRNAs, respectively, to stress conditions. Thus, 13C-dynamods enables studies of the origin of modified RNAs at steady-state and subsequent dynamics under non-stationary conditions. These results open new directions to probe the presence and biological regulation of modifications in particular RNAs

    Complete larval development of the hermit crabs Clibanarius aequabilis and Clibanarius erythropus (Decapoda : Anomura : Diogenidae), under laboratory conditions, with a revision of the larval features of genus Clibanarius

    Get PDF
    The complete larval development (four zoeae and one megalopa) of Clibanarius aequabilis and C. erythropus, reared under laboratory conditions, is described and illustrated. The larval stages of the two northeastern Atlantic Clibanarius species cannot be easily differentiated. Their morphological characters are compared with those of other known Clibanarius larvae. The genus Clibanarius is very homogeneous with respect to larval characters. All Clibanarius zoeae display a broad and blunt rostrum, smooth abdominal segments and an antennal scale without a terminal spine. Beyond the second zoeal stage, the fourth telson process is present as a fused spine, and the uropods are biramous. In the fourth larval stage all species display a mandibular palp. The Clibanarius megalopa presents weakly developed or no ocular scales, symmetrical chelipeds, apically curved corneous dactylus in the second and third pereiopods, and 5-11 setae on the posterior margin of the telson. Apart from the number of zoeal stages, Clibanarius species may be separated, beyond the second zoeal stage, by the telson formula and the morphology of the fourth telson process.info:eu-repo/semantics/publishedVersio

    Exploitation promotes earlier sex change in a protandrous patellid limpet, Patella aspera Röding, 1798

    Get PDF
    Exploitation of organisms can prompt the reduction in the number and size of target populations consequently affecting reproductive output and replenishment. Here, we investigated the effects of exploitation on the population structure of a protandrous patellid limpet, Patella aspera, an overexploited Macaronesian endemic. Timed dives were used to collect animals across eleven islands of Macaronesia. Individuals were inspected for sex, size, and gonad stage. Using catch effort (time per person) per island coastal perimeter as a surrogate for exploitation intensity, we found that limpet abundance (CPUE) and mean size tended to decrease with exploitation intensity. When considering the sex of animals separately, the size of the largest male, but not females, decreased with exploitation. In contrast, the size of the smallest male remained relatively consistent, whereas the size of the smallest female decreased significantly with exploitation. As exploitation is mostly targeting larger individuals, results suggest that males are compensating the removal of larger females, by undergoing sex change at smaller and presumably earlier sizes. These results have wider implications for the conservation of P. aspera, as a reduction in female size will likely affect the numbers of oocytes produced, hence fecundity. Regulations promoting the protection of the larger-sized animals should be enforced to safeguard the replenishment of the population

    Chemical Composition and Antifungal Properties of Essential Oil of Origanum vulgare Linnaeus (Lamiaceae) against Sporothrix schenckii and Sporothrix brasiliensis

    Get PDF
    Purpose: To evaluate the effect of the essential oil of Origanum vulgare Linnaeus (Lamiaceae) on the growth of Sporothrix schenckii and Sporothrix brasiliensis.Methods: The chemical composition of the essential oil was investigated by gas chromatography/flame ionization detector (GC-FID). The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) were determined by broth micro-dilution method. Scanning electron microscopy (SEM) was also performed to reveal morphological alterations in Sporothrix spp. cells.Results: The major components of the essential oil were γ-terpinene (30.5%), carvacrol (15.7 %) and 4-terpineol (13.0 %). γ-Terpinene showed potential antifungal activity with MIC ranging from 62.5 to 500.0 μg mL-1 for S. schenckii, and 125.0 to 250.0 μg mL-1 for S. brasiliensis. SEM micrographs revealed morphological alterations in hyphae and reduction of the adhered conidia numbers.Conclusion: Origanum vulgare Linnaeus essential oil possesses potential antifungal activity, and can, therefore, can be developed as an alternative agent for the treatment of sporotrichosis.Keywords: Antifungal Activity, Essential Oil, Gas Chromatography, Origanum vulgare, Sporotrichosi

    SeagrassDB: An open-source transcriptomics landscape for phylogenetically profiled seagrasses and aquatic plants

    Full text link
    © 2018, The Author(s). Seagrasses and aquatic plants are important clades of higher plants, significant for carbon sequestration and marine ecological restoration. They are valuable in the sense that they allow us to understand how plants have developed traits to adapt to high salinity and photosynthetically challenged environments. Here, we present a large-scale phylogenetically profiled transcriptomics repository covering seagrasses and aquatic plants. SeagrassDB encompasses a total of 1,052,262 unigenes with a minimum and maximum contig length of 8,831 bp and 16,705 bp respectively. SeagrassDB provides access to 34,455 transcription factors, 470,568 PFAM domains, 382,528 prosite models and 482,121 InterPro domains across 9 species. SeagrassDB allows for the comparative gene mining using BLAST-based approaches and subsequent unigenes sequence retrieval with associated features such as expression (FPKM values), gene ontologies, functional assignments, family level classification, Interpro domains, KEGG orthology (KO), transcription factors and prosite information. SeagrassDB is available to the scientific community for exploring the functional genic landscape of seagrass and aquatic plants at: http://115.146.91.129/index.php

    Hypercalcitoninemia is not Pathognomonic of Medullary Thyroid Carcinoma

    Get PDF
    Hypercalcitoninemia has frequently been reported as a marker for medullary thyroid carcinoma. Currently, calcitonin measurements are mostly useful in the evaluation of tumor size and progression, and as an index of biochemical improvement of medullary thyroid carcinomas. Although measurement of calcitonin is a highly sensitive method for the detection of medullary thyroid carcinoma, it presents a low specificity for this tumor. Several physiologic and pathologic conditions other than medullary thyroid carcinoma have been associated with increased levels of calcitonin. Several cases of thyroid nodules associated with increased values of calcitonin are not medullary thyroid carcinomas, but rather are related to other conditions, such as hypercalcemias, hypergastrinemias, neuroendocrine tumors, renal insufficiency, papillary and follicular thyroid carcinomas, and goiter. Furthermore, prolonged treatment with omeprazole (> 2–4 months), beta-blockers, glucocorticoids and potential secretagogues, have been associated with hypercalcitoninemia. An association between calcitonin levels and chronic auto-immune thyroiditis remains controversial. Patients with calcitonin levels >100 pg/mL have a high risk for medullary thyroid carcinoma (~90%–100%), whereas patients with values from 10 to 100 pg/mL (normal values: <8.5 pg/mL for men, < 5.0 pg/mL for women; immunochemiluminometric assay) have a <25% risk for medullary thyroid carcinoma

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel

    On the scaling of activity in tropical forest mammals

    Get PDF
    Activity range – the amount of time spent active per day – is a fundamental aspect contributing to the optimization process by which animals achieve energetic balance. Based on their size and the nature of their diet, theoretical expectations are that larger carnivores need more time active to fulfil their energetic needs than do smaller ones and also more time active than similar‐sized non‐carnivores. Despite the relationship between daily activity, individual range and energy acquisition, large‐scale relationships between activity range and body mass among wild mammals have never been properly addressed. This study aimed to understand the scaling of activity range with body mass, while controlling for phylogeny and diet. We built simple empirical predictions for the scaling of activity range with body mass for mammals of different trophic guilds and used a phylogenetically controlled mixed model to test these predictions using activity records of 249 mammal populations (128 species) in 19 tropical forests (in 15 countries) obtained using camera traps. Our scaling model predicted a steeper scaling of activity range in carnivores (0.21) with higher levels of activity (higher intercept), and near‐zero scaling in herbivores (0.04). Empirical data showed that activity ranges scaled positively with body mass for carnivores (0.061), which also had higher intercept value, but not for herbivores, omnivores and insectivores, in general, corresponding with the predictions. Despite the many factors that shape animal activity at local scales, we found a general pattern showing that large carnivores need more time active in a day to meet their energetic demands. Introduction Activity range – the amount of time, in hours, spent active per day – is a fundamental outcome of the complex physiological and behavioral optimization process by which animals ensure that energy input keeps pace with energy output. In addition to basal metabolism, animals face costs of foraging, acquiring mates and shelter, building reserves for lean times and escaping predators (Carbone et al. 2007, Halle and Stenseth 2012). Environmental and ecological factors that vary through the day (e.g. luminosity, temperature, predation risk and competition avoidance) constrain activity to certain times, depending on morpho‐physiological limitations (Castillo‐Ruiz et al. 2012, Hut et al. 2012). In addition, animals need time to rest in order to recover their cognitive or physical condition (Siegel 2005). Thus, they must optimize their activity range to meet their resource requirements, while dealing with natural daily cycles and saving time for sleep/rest (Downes 2001, Siegel 2005, Cozzi et al. 2012). The resource requirements of mammals are related to basal metabolic rate, which scales positively with body mass (Kleiber 1932, Isaac and Carbone 2010), while predation risk decreases with body mass (Sinclair et al. 2003, Hopcraft et al. 2009). Because high predation risk constrains activity while high resource needs increases activity range (Cozzi et al. 2012, Suselbeek et al. 2014), the question arises whether and how activity range also scales with body mass. Day range (total distance travelled in a day) and home range (area in which animals perform their daily activities) scales positively with body mass and are key metrics to understand the resource requirements of an animal (McNab 1963, Kelt and Van Vuren 2001, Carbone et al. 2005, Tamburello et al. 2015). As activity range is related to space‐use metrics (i.e. home range and day range), it is hence, also related to the acquisition of energy. Given that, one might expect activity range to increase with body mass. However, we have a poor understanding of how this relationship actually looks. Previous work developed predictions of body mass scaling with day range (Garland 1983, Carbone et al. 2005) and travel speed (Carbone et al. 2007, Rowcliffe et al. 2016). From a simple physical viewpoint, activity range should equal the day range divided by average travel speed. It should thus be possible to infer the scaling of activity range with body mass from these relationships. Some of the variation in space use across species that is not explained by body mass is associated with different evolutionary histories and ecological traits (McNab 1963, Kelt and Van Vuren 2001, Price and Hopkins 2015, Tamburello et al. 2015). Diet is the most conspicuous of these, because primary and secondary productivity present different overall yields and accessibility for consumers (Jetz et al. 2004), which in turn influence individual movements (Carbone et al. 2005) and potentially activity range, when exploiting resources at different trophic levels. The nature of the diet aggravates the higher energetic demands of larger carnivores. Predators have considerable energetic constraints related to hunting and handling their prey (Gorman et al. 1998, Carbone et al. 1999) as animal prey can be rare, widely dispersed, unpredictable in time and space and not storable (Jetz et al. 2004, Carbone et al. 2007). Therefore, carnivores have the lowest energy supply rates (supply rate of usable resources available inside the home range), independent of body mass, when compared to other diet categories (Jetz et al. 2004) besides exploring larger areas and traveling greater daily distances (McNab 1963, Kelt and Van Vuren 2001, Carbone et al. 2005, Tamburello et al. 2015). Therefore, larger animals occupy larger areas than small ones, and carnivores occupy larger areas than do similar‐sized non‐carnivores (Jetz et al. 2004, Tamburello et al. 2015). To date, few studies have considered interspecific variation in activity range with body mass and other species traits. For example, van Schaik and Griffiths (1996) and Gómez et al. (2005) anecdotally suggested that larger mammal species are cathemeral (i.e. active day and night), which implies that they can be active during a larger proportion of the 24‐h cycle. Rowcliffe et al. (2014) found that activity range is positively correlated with body mass in tropical forest mammals in Panama. Ramesh et al. (2015) found a negative relationship between body mass and activity concentration (i.e. how concentrated in few hours is the activity of an animal during the day) in Indian mammals, also equating to a positive association between activity range and body mass. However, no study has explored variation in activity range across a diverse range of species, while controlling for phylogeny and diet. This has been, at least in part, due to a lack of consistent data available on a wide range of species. Recent work using camera traps (Oliveira‐Santos et al. 2013, Rowcliffe et al. 2014), however, has demonstrated that accurate estimates of activity range can be obtained from photographic records from camera traps. Given the large and rapidly increasing volume of camera‐trapping data available globally (Burton et al. 2015), these approaches, consistently applied across a wide range of studies, can provide an important basis for the large‐scale study of activity. Here, we provided simple empirical predictions for the scaling of activity range with body mass for mammals of different trophic guilds. To test these predictions, we estimated the activity range for 249 populations of 128 terrestrial mammal species across 19 tropical forests, and used a phylogenetically controlled mixed model to determine how activity range scales with body mass by diet. As larger animals occupy larger areas than small ones, and carnivores occupy larger areas than do similar‐sized non‐carnivores (Jetz et al. 2004), we hypothesize that carnivores will present a higher scaling of activity range with body mass and also higher activity ranges for a given mass (higher intercept) when compared to herbivores, omnivores and insectivores

    Heterogeneity of breast cancer risk within the South Asian female population in England: a population-based case–control study of first-generation migrants

    Get PDF
    South Asian women in England have a lower breast cancer risk than their English-native counterparts, but less is known about variations in risk between distinct South Asian ethnic subgroups. We used the data from a population-based case-control study of first-generation South Asian migrants to assess risks by ethnic subgroup. In all, 240 breast cancer cases, identified through cancer registries, were individually matched on age and general practitioner to two controls. Information on the region of origin, religious and linguistic background, and on breast cancer risk factors was obtained from participants. Breast cancer odds varied significantly between the ethnic subgroups (P=0.008), with risk increasing in the following order Bangladeshi Muslims (odds ratio (OR) 0.33, 95% confidence interval (CI): 0.10, 1.06), Punjabi Hindu (OR 0.59, 95% CI: 0.33, 1.27), Gujarati Hindu (I=reference group), Punjabi Sikh (OR 1.23, 95% CI: 0.72, 2.11) and Pakistani/Indian Muslims (OR 1.76, 95% CI: 1.10, 2.81). The statistically significant raised risk in Pakistani/Indian Muslims increased with adjustment for socioeconomic and reproductive risk factors (OR 2.12, 95% CI: 1.25, 3.58), but was attenuated, and no longer significant, with further adjustment for waist circumference and intake of nonstarch polysaccharides and fat (OR 1.49, 95% CI: 0.85, 2.63). These findings reveal differences in breast cancer risk between South Asian ethnic subgroups, which were not fully explained by reproductive differences, but were partly accounted for by diet and body size
    corecore