7 research outputs found

    Peptide Nucleic Acids as miRNA Target Protectors for the Treatment of Cystic Fibrosis

    Get PDF
    Cystic Fibrosis (CF) is one of the most common life shortening conditions in Caucasians. CF is caused by mutations in the CF Transmembrane Conductance Regulator (CFTR) gene which result in reduced or altered CFTR functionality. Several microRNAs (miRNAs) downregulate the expression of CFTR, thus causing or exacerbating the symptoms of CF. In this context, the design of anti-miRNA agents represents a valid functional tool, but its translation to the clinic might lead to unpredictable side effects because of the interference with the expression of other genes regulated by the same miRNAs. Herein, for the first time, is proposed the use of peptide nucleic acids (PNAs) to protect specific sequences in the 3'UTR (untranslated region) of the CFTR messenger RNA (mRNA) by action of miRNAs. Two PNAs (7 and 13 bases long) carrying the tetrapeptide Gly-SerP-SerP-Gly at their C-end, fully complementary to the 3'UTR sequence recognized by miR-509-3p, have been synthesized and the structural features of target PNA/RNA heteroduplexes have been investigated by spectroscopic and molecular dynamics studies. The co-transfection of the pLuc-CFTR-3´UTR vector with different combinations of PNAs, miR-509-3p, and controls in A549 cells demonstrated the ability of the longer PNA to rescue the luciferase activity by up to 70% of the control, thus supporting the use of suitable PNAs to counteract the reduction in the CFTR expression

    Prevalence of Sarcopenia in Women with Breast Cancer

    No full text
    Sarcopenia is a common finding in patients with cancer and potentially influences the patient's outcome. The aim of this study was to evaluate the prevalence of sarcopenia, according to the European Working Group on Sarcopenia in Older People, in a sample of women with breast cancer (BC) and a BMI lower than 30 kg/m2. This cross-sectional study was conducted in patients with BC, stage 0-III, and receiving therapy for BC; the women were recruited at the Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy. A control group with similar age and BMI was selected from the internal database. Anthropometry, bioimpedance analysis (BIA) and hand grip strength (HGS) were measured to detect sarcopenia. A total of 122 patients (mean age 49.3 ± 11.0 years, BMI 24.6 ± 3.0 kg/m2) and 80 healthy controls were analyzed. Sarcopenia was found in 13.9% patients with BC, while none of the subjects in the control group was sarcopenic. By comparing BC patients with and without sarcopenia and the control group, the fat-free mass of sarcopenic BC patients were significantly lower than those of both non-sarcopenic BC patients and the control (p < 0.05). The phase angle was also significantly lower in sarcopenic patients (-0.5 degrees, p = 0.048) than in the control group. Considering the prevalence of sarcopenia in patients with BC, our findings suggest the usefulness of body composition and HGS evaluation for early screening of sarcopenia to reduce the risk of associated complications

    FOXC1 is a Critical Mediator of EGFR Function in Human Basal-like Breast Cancer

    No full text
    BACKGROUND. Human basal-like breast cancer (BLBC) has a poor prognosis and is often identified by expression of the epidermal growth factor receptor (EGFR). BLBC remains a major clinical challenge because its pathogenesis is not well understood, thus hindering efforts to develop targeted therapies. Recent data implicate the forkhead box C1 (FOXC1) transcription factor as an important prognostic biomarker and functional regulator of BLBC, but its regulatory mechanism and impact on BLBC tumorigenesis remain unclear. METHODS. The association between FOXC1 and EGFR expression in human breast cancer was examined by immunohistochemistry in formalin-fixed tissues and analysis of the TCGA database. The regulation of FOXC1 by EGFR activation was investigated in MDA-MB-468 cells using immunoblotting, qRT-PCR, and luciferase activity assays. This EGFR effect on FOXC1 expression was confirmed using the MDA-MB-468 xenograft model. RESULTS. Both FOXC1 mRNA and protein levels significantly correlated with EGFR expression in human breast tumors. EGFR activation induced FOXC1 transcription through the ERK and Akt pathways in BLBC. EGFR inhibition in vivo reduced FOXC1 expression in xenograft tumors. We also found that FOXC1 knockdown impaired the effects of EGF on BLBC cell proliferation, migration, and invasion. CONCLUSIONS. Our findings uncover a novel EGFR-FOXC1 signaling axis critical for BLBC cell functions, supporting the notion that intervention in the FOXC1 pathway may provide potential modalities for BLBC treatment

    miRNAs associated with prostate cancer risk and progression

    No full text

    Small molecules in targeted cancer therapy: advances, challenges, and future perspectives

    No full text
    corecore