1,572 research outputs found

    An experimental study of intermodulation effects in an atomic fountain frequency standard

    Full text link
    The short-term stability of passive atomic frequency standards, especially in pulsed operation, is often limited by local oscillator noise via intermodulation effects. We present an experimental demonstration of the intermodulation effect on the frequency stability of a continuous atomic fountain clock where, under normal operating conditions, it is usually too small to observe. To achieve this, we deliberately degrade the phase stability of the microwave field interrogating the clock transition. We measure the frequency stability of the locked, commercial-grade local oscillator, for two modulation schemes of the microwave field: square-wave phase modulation and square-wave frequency modulation. We observe a degradation of the stability whose dependence with the modulation frequency reproduces the theoretical predictions for the intermodulation effect. In particular no observable degradation occurs when this frequency equals the Ramsey linewidth. Additionally we show that, without added phase noise, the frequency instability presently equal to 2x10-13 at 1s, is limited by atomic shot-noise and therefore could be reduced were the atomic flux increased

    COHERENT GLOBAL POSITIONING SYSTEM SIGNAL INTERFERENCE DETECTION AND MITIGATION

    Get PDF
    The civil, commercial, and scientific communities rely upon uninterrupted access to the free-to-air civil Global Positioning System (GPS) signal. Hostile actors seek to exploit the unencrypted nature of the civil GPS frequencies to induce false position and time on a target receiver. Coherent interference attacks include meaconing and spoofing of the GPS signals. Uninterrupted access requires the detection and subsequent mitigation of this coherent interference. This thesis studied the effectiveness of a variety of detection and mitigation techniques against three coherent interference scenarios. The study combined a modeled radio frequency environment with a simulation of radio frequency interactions on a digital spectrum analyzer to quantify the limits of detection and mitigation techniques. While none of the analyzed techniques perfectly detected and mitigated all attack configurations, some techniques proved more effective against certain scenarios. This thesis provides civil GPS users with the generalized detection and mitigation limits of analyzed techniques, allowing for informed selection of coherent interference mitigation strategies.Approved for public release. Distribution is unlimited.Captain, United States Arm

    High-growth firms: introduction to the special section

    Get PDF
    High-growth firms (HGFs) have attracted considerable attention recently, as academics and policymakers have increasingly recognized the highly skewed nature of many metrics of firm performance. A small number of HGFs drives a disproportionately large amount of job creation, while the average firm has a limited impact on the economy. This article explores the reasons for this increased interest, summarizes the existing literature, and highlights the methodological considerations that constrain and bias research. This special section draws attention to the importance of HGFs for future industrial performance, explores their unusual growth trajectories and strategies, and highlights the lack of persistence of high growth. Consequently, while HGFs are important for understanding the economy and developing public policy, they are unlikely to be useful vehicles for public policy given the difficulties involved in predicting which firms will grow, the lack of persistence in high growth levels, and the complex and often indirect relationship between firm capability, high growth, and macro-economic performance

    A Cation-π Interaction Discriminates among Sodium Channels That Are Either Sensitive or Resistant to Tetrodotoxin Block

    Get PDF
    Voltage-gated sodium channels control the upstroke of the action potential in excitable cells of nerve and muscle tissue, making them ideal targets for exogenous toxins that aim to squelch electrical excitability. One such toxin, tetrodotoxin (TTX), blocks sodium channels with nanomolar affinity only when an aromatic Phe or Tyr residue is present at a specific location in the external vestibule of the ion-conducting pore. To test whether TTX is attracted to Tyr401 of NaV1.4 through a cation-{pi} interaction, this aromatic residue was replaced with fluorinated derivatives of Phe using in vivo nonsense suppression. Consistent with a cation-{pi} interaction, increased fluorination of Phe401, which reduces the negative electrostatic potential on the aromatic face, caused a monotonic increase in the inhibitory constant for block. Trifluorination of the aromatic ring decreased TTX affinity by ~50-fold, a reduction similar to that caused by replacement with the comparably hydrophobic residue Leu. Furthermore, we show that an energetically equivalent cation-{pi} interaction underlies both use-dependent and tonic block by TTX. Our results are supported by high level ab initio quantum mechanical calculations applied to a model of TTX binding to benzene. Our analysis suggests that the aromatic side chain faces the permeation pathway where it orients TTX optimally and interacts with permeant ions. These results are the first of their kind to show the incorporation of unnatural amino acids into a voltage-gated sodium channel and demonstrate that a cation-{pi} interaction is responsible for the obligate nature of an aromatic at this position in TTX-sensitive sodium channels

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Characterization and digital restauration of XIV-XV centuries written parchments by means of non-destructive techniques. Three case studies

    Get PDF
    Parchment is the primary writing medium of the majority of documents with cultural importance. Unfortunately, this material suffers of several mechanisms of degradation that affect its chemical-physical structure and the readability of text. Due to the unique and delicate character of these objects, the use of nondestructive techniques is mandatory. In this work, three partially degraded handwritten parchments dating back to the XIV-XV centuries were analyzed by means of X-ray fluorescence spectroscopy, µ-ATR Fourier transform infrared spectroscopy, and reflectance and UV-induced fluorescence spectroscopy. 'e elemental and molecular results provided the identification of the inks, pigments, and superficial treatments. In particular, all manuscripts have been written with iron gall inks, while the capital letters have been realized with cinnabar and azurite. Furthermore, multispectral UV fluorescence imaging and multispectral VIS-NIR imaging proved to be a good approach for the digital restoration of manuscripts that suffer from the loss of inked areas or from the presence of brown spotting. Indeed, using ultraviolet radiation and collecting the images at different spectral ranges is possible to enhance the readability of the text, while by illuminating with visible light and by collecting the images at longer wavelengths, the hiding effect of brown spots can be attenuated

    Progress in Atomic Fountains at LNE-SYRTE

    Full text link
    We give an overview of the work done with the Laboratoire National de M\'etrologie et d'Essais-Syst\`emes de R\'ef\'erence Temps-Espace (LNE-SYRTE) fountain ensemble during the last five years. After a description of the clock ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest developments, we review recent studies of several systematic frequency shifts. This includes the distributed cavity phase shift, which we evaluate for the FO1 and FOM fountains, applying the techniques of our recent work on FO2. We also report calculations of the microwave lensing frequency shift for the three fountains, review the status of the blackbody radiation shift, and summarize recent experimental work to control microwave leakage and spurious phase perturbations. We give current accuracy budgets. We also describe several applications in time and frequency metrology: fountain comparisons, calibrations of the international atomic time, secondary representation of the SI second based on the 87Rb hyperfine frequency, absolute measurements of optical frequencies, tests of the T2L2 satellite laser link, and review fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally, we give a summary of the tests of the PHARAO cold atom space clock performed using the FOM transportable fountain.Comment: 19 pages, 12 figures, 5 tables, 126 reference

    Improved photocatalytic properties of doped titanium-based nanometric oxides

    Get PDF
    Photocatalysis is considered one of the most promising technologies for applications in the environmental field especially in the abatement of water-soluble organic pollutants. In this field, titanium dioxide nanoparticles have drawn much attention recently; however, the use of this oxide presents some limitation since it allows to obtain high photoresponse and degradation efficiency only under UV light irradiation, that represents the 3 to 4% of the solar radiation, so preventing its environmental large-scale applications under diffuse daylight. In this work the photocatalytic efficiencyoftitanium-based oxides systems containing alkaline earth metals such as barium and strontium, prepared by a simple sol-gel method was investigated, evaluating the degradation of methylene blue as model compound under UV and visible light irradiation. The results were compared with those obtained with Degussa P25 titanium dioxide. The achieved degradation percentage of methylene blue are very promising showing that under visible light irradiation it is possible to obtain a maximum dye removal percentage ~ 50 % higher than that obtained with the Degussa P25

    'Backgating' model including self-heating for low-frequency dispersive effects in III-V FETs

    Get PDF
    A new approach is proposed which takes into account both traps and thermal phenomena for the modelling of deviations between static and dynamic drain current characteristics in III-V field effect transistors. The model is based on the well-known `backgating' concept and can easily be identified on the basis of conventional static drain current characteristics and small-signal, low-frequency S parameters. Experimental results confirm the accuracy of the proposed mode
    corecore