367 research outputs found

    Approximating the influence coefficients of non-planar elastic solids for conformal contact analysis

    Get PDF
    The exact contact theory is an efficient alternative to the more general yet computationally expensive Finite Element Method for the detailed study of elastostatic contact problems. For its application in conformal contact problems, the exact contact theory needs to be fed with influence coefficients (ICs) appropriate for non-planar solids. An analytical approximation of the ICs for non-planar solids was proposed in a previous work, avoiding the involved process generally necessary to obtain ICs accurately. This work presents further developments of this approximation, further comparison with numerically obtained ICs, and evaluates the errors incurred when using approximated ICs in conformal contact.This work has been partly financed within the European Horizon 2020 Joint Technology Initiative Shift2Rail, through contract no. 826255 (IN2TRACK2). The authors wish to thank as well the Spanish Research Ministry MICINN/Economy and Competitiveness Ministry MINECO and MCI/AEI for their funding through contracts TRA2014-59599-R and PID2019-109483RB-I00, including funding by the FEDER-ERDF European Regional Development Fund, and also the Basque Government for financial assistance through IT919-1

    Dynamic simulations in SixTrack

    Full text link
    The DYNK module allows element settings in SixTrack to be changed on a turn-by-turn basis. This document contains a technical description of the DYNK module in SixTrack. It is mainly intended for a developer or advanced user who wants to modify the DYNK module, for example by adding more functions that can be used to calculate new element settings, or to add support for new elements that can be used with DYNK.Comment: Submission to CERN yellow report / conference proceeding, the 2015 collimation tracking code worksho

    Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed

    Full text link
    [EN] Three-dimensional mathematical model was developed for a rectangular TE10n microwave heating cavity system, working at 2.45 GHz. Energy/heat, momentum equations were solved together with Maxwell's electromagnetic field equations using comm. MULTIPHYSICS (R) simulation environment. The dielectric properties, epsilon' and epsilon '', of NaY zeolite (Si/Al = 2.5) were evaluated as a function of temperature. Considering these values, the microwave heating of a porous fixed-bed made of dry NaY zeolite was simulated. Electric field distribution, axial and radial temperature profiles and temperature evolution with time were obtained. The zeolite fixed bed was heated up to 180 degrees C in 5 min, with 30 W power. The fixed-bed temperature evolution under non-steady state conditions showed the same trend as the one observed experimentally with only an average deviation of 10.3%. The model was used to predict microwave heating of other materials improving energy efficiency of the microwave cavity. Furthermore, the developed model was able to predict thermal runaway for zeolites.Financial support from the European Research Council ERC-Advanced Grant HECTOR-267626 is gratefully acknowledged. Hakan Nigar acknowledges financial support from the Spanish Ministry of Education for the FPU grant (Formacion del Profesorado Universitario - FPU12/06864), and also for the academic short stay grant (Estancia Breve - FPU2016) at the Delft University of Technology, Delft, The Netherlands.Nigar, H.; Sturm, GSJ.; García-Baños, B.; Penaranda-Foix, FL.; Catalå Civera, JM.; Mallada, R.; Stankiewicz, A.... (2019). Numerical analysis of microwave heating cavity: Combining electromagnetic energy, heat transfer and fluid dynamics for a NaY zeolite fixed-bed. Applied Thermal Engineering. 155:226-238. https://doi.org/10.1016/j.applthermaleng.2019.03.117S22623815

    High-pressure study of the behavior of mineral barite by X-ray diffraction

    Get PDF
    In this paper, we report the angle-dispersive x-ray diffraction data of barite, BaSO 4, measured in a diamond-anvil cell up to a pressure of 48 GPa, using three different fluid pressure-transmitting media (methanol-ethanol mixture, silicone oil, and He). Our results show that BaSO 4 exhibits a phase transition at pressures that range from 15 to 27 GPa, depending on the pressure media used. This indicates that nonhydrostatic stresses have a crucial role in the high-pressure behavior of this compound. The new high-pressure (HP) phase has been solved and refined from powder data, having an orthorhombic P2 12 12 1 structure. The pressure dependence of the structural parameters of both room- and HP phases of BaSO 4 is also discussed in light of our theoretical first-principles total-energy calculations. Finally, a comparison between the different equations of state obtained in our experiments is reported. © 2011 American Physical Society.Financial support from the Spanish Consolider Ingenio 2010 Program (Project No. CDS2007-00045) is acknowledged. The work was also supported by Spanish MICCIN under Projects No. CTQ2009-14596-C02-01 and No. MAT2010-21270-C04-01 as well as from Comunidad de Madrid and European Social Fund: S2009/PPQ-1551 4161893 (QUIMAPRES). The ESRF is acknowledged for provision of beamtime.SantamarĂ­a-PĂ©rez, D.; Gracia, L.; Garbarino, G.; BeltrĂĄn, A.; ChuliĂĄ-JordĂĄn, R.; Gomis Hilario, O.; Errandonea, D.... (2011). High-pressure study of the behavior of mineral barite by X-ray diffraction. Physical Review B. 84:54102-1-54102-8. https://doi.org/10.1103/PhysRevB.84.054102S54102-154102-884RUBIN, A. E. (1997). Mineralogy of meteorite groups. Meteoritics & Planetary Science, 32(2), 231-247. doi:10.1111/j.1945-5100.1997.tb01262.xVegas, A. (2000). Cations in Inorganic Solids. Crystallography Reviews, 7(3), 189-283. doi:10.1080/08893110008044245SantamarĂ­a-PĂ©rez, D., & Vegas, A. (2003). The Zintl–Klemm concept applied to cations in oxides. I. The structures of ternary aluminates. Acta Crystallographica Section B Structural Science, 59(3), 305-323. doi:10.1107/s0108768103005615Vegas, A., & Jansen, M. (2001). Structural relationships between cations and alloys; an equivalence between oxidation and pressure. Acta Crystallographica Section B Structural Science, 58(1), 38-51. doi:10.1107/s0108768101019310Lee, P.-L., Huang, E., & Yu, S.-C. (2001). Phase diagram and equations of state of BaSO4. High Pressure Research, 21(2), 67-77. doi:10.1080/08957950108201005Lee, P.-L., Huang, E., & Yu, S.-C. (2003). High-pressure Raman and X-ray studies of barite, BaSO4. High Pressure Research, 23(4), 439-450. doi:10.1080/0895795031000115439Crichton, W. A., Merlini, M., Hanfland, M., & Muller, H. (2011). The crystal structure of barite, BaSO4, at high pressure. American Mineralogist, 96(2-3), 364-367. doi:10.2138/am.2011.3656Errandonea, D., Santamaria-Perez, D., Bondarenko, T., & Khyzhun, O. (2010). New high-pressure phase of HfTiO4 and ZrTiO4 ceramics. Materials Research Bulletin, 45(11), 1732-1735. doi:10.1016/j.materresbull.2010.06.061LĂłpez-Solano, J., RodrĂ­guez-HernĂĄndez, P., Muñoz, A., Gomis, O., SantamarĂ­a-Perez, D., Errandonea, D., 
 Raptis, C. (2010). Theoretical and experimental study of the structural stability ofTbPO4at high pressures. Physical Review B, 81(14). doi:10.1103/physrevb.81.144126Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673RodrĂ­guez-Carvajal, J. (1993). Recent advances in magnetic structure determination by neutron powder diffraction. Physica B: Condensed Matter, 192(1-2), 55-69. doi:10.1016/0921-4526(93)90108-iBecke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648-5652. doi:10.1063/1.464913Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. doi:10.1103/physrevb.37.785Gracia, L., BeltrĂĄn, A., & AndrĂ©s, J. (2007). Characterization of the High-Pressure Structures and Phase Transformations in SnO2. A Density Functional Theory Study. The Journal of Physical Chemistry B, 111(23), 6479-6485. doi:10.1021/jp067443vGracia, L., BeltrĂĄn, A., & Errandonea, D. (2009). Characterization of theTiSiO4structure and its pressure-induced phase transformations: Density functional theory study. Physical Review B, 80(9). doi:10.1103/physrevb.80.094105Blanco, M. A., Francisco, E., & Luaña, V. (2004). GIBBS: isothermal-isobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model. Computer Physics Communications, 158(1), 57-72. doi:10.1016/j.comphy.2003.12.001Errandonea, D., SantamarĂ­a-Perez, D., Vegas, A., Nuss, J., Jansen, M., RodrĂ­guez-Hernandez, P., & Muñoz, A. (2008). Structural stability ofFe5Si3andNi2Sistudied by high-pressure x-ray diffraction andab initiototal-energy calculations. Physical Review B, 77(9). doi:10.1103/physrevb.77.094113Santamarı́a-PĂ©rez, D., Nuss, J., Haines, J., Jansen, M., & Vegas, A. (2004). Iron silicides and their corresponding oxides: a high-pressure study of Fe5Si3. Solid State Sciences, 6(7), 673-678. doi:10.1016/j.solidstatesciences.2004.03.027Errandonea, D., Meng, Y., Somayazulu, M., & HĂ€usermann, D. (2005). Pressure-induced transition in titanium metal: a systematic study of the effects of uniaxial stress. Physica B: Condensed Matter, 355(1-4), 116-125. doi:10.1016/j.physb.2004.10.030Klotz, S., Paumier, L., Le March, G., & Munsch, P. (2009). The effect of temperature on the hydrostatic limit of 4:1 methanol–ethanol under pressure. High Pressure Research, 29(4), 649-652. doi:10.1080/08957950903418194Errandonea, D., & ManjĂłn, F. J. (2008). Pressure effects on the structural and electronic properties of ABX4 scintillating crystals. Progress in Materials Science, 53(4), 711-773. doi:10.1016/j.pmatsci.2008.02.001Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Crichton, W. A., Parise, J. B., Antao, S. M., & Grzechnik, A. (2005). Evidence for monazite-, barite-, and AgMnO4(distorted barite)-type structures of CaSO4at high pressure and temperature. American Mineralogist, 90(1), 22-27. doi:10.2138/am.2005.1654Huang, T., Shieh, S. R., Akhmetov, A., Liu, X., Lin, C.-M., & Lee, J.-S. (2010). Pressure-induced phase transition inBaCrO4. Physical Review B, 81(21). doi:10.1103/physrevb.81.214117Zhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Panchal, V., Garg, N., & Sharma, S. M. (2006). Raman and x-ray diffraction investigations on BaMoO4under high pressures. Journal of Physics: Condensed Matter, 18(16), 3917-3929. doi:10.1088/0953-8984/18/16/00

    Connected parents: combining online and off-line parenthood in vlogs and blogs

    Get PDF
    This article explores evaluative discourse in a corpus sample of parents' vlogs (video blogs) and blogs (henceforth v/ blogs) dealing with family tasks and responsibilities, as a reflection of underlying values concerning parenthood. It pays special attention to the important role played by the expression of attitude, understood as "ways of feeling" and including the meanings of affect, judgement and appreciation, together with positive politeness in the social practices of the discursive construction of online and off-line parenthood. Analysis and description of the data show two main patterns in parents' practices, either aiming at perfection through juggling and multi-tasking or building resistance to the demands of families and society. Results show that parents frequently exploit the system of affect for building positive face and rapport, while indirectly expressing judgement of social esteem and social sanction, which construct their identities as mothers and fathers and those of the members of their communities of practice. The corpus for the study consists of a random sample of 400 evaluative units in posts and comments on v/ blogs dealing with family tasks and responsibilities (200 in English and 200 in Spanish, with half the sample being drawn from fathers' and the other half from mothers' v/ blogs). I will approach the analysis of the data from appraisal (Martin and White 2005, Bednarek 2008) and politeness theory (Brown and Levinson 1987) in order to explore the features of evaluative discourse and the management of face. The methodology for processing the data borrows quantitative techniques from Corpus Linguistics, including the coding and statistical treatment of the sample with UAM Corpus Tools (O'Donnell 2011), together with Pragmatics and Discourse Analysis (DA), as done in some previous research (SantamarĂ­a-GarcĂ­a 2011, 2014).Project "EMO-FUNDETT: EMOtion and language at work", I+D FFI2013-47792-C2-1-P, sponsored by the Spanish Ministry of Science and Innovatio

    Dry deposition and canopy uptake in Mediterranean holm-oak forests estimated with a canopy budget model : a focus on N estimations

    Get PDF
    Bulk/wet and throughfall fluxes of major compounds were measured from June 2011 to June 2013 at four Mediterranean holm-oak (Quercus ilex) forests in the Iberian Peninsula. Regression analysis between net throughfall fluxes and precipitation indicated that the best defined canopy process was leaching for Kâș and uptake for NH₄âș at all sites. A more variable response between sites was found for Naâș, CaÂČâș, SO₄ÂČ⁻ and Cl⁻, which suggests that the interplay of dry deposition, leaching and uptake at the canopy was different depending on site climate and air quality characteristics. A canopy budget model (CBM) was used to try to discriminate between the canopy processes and enable to estimate dry deposition and uptake fluxes at three of the sites that complied with the model specifications. To derive N uptake, an efficiency factor of NH₄âș vs. NO₃⁻ uptake (xNH₄) corresponding to moles of NH₄âș taken up for each NO₃⁻ mol, has to be determined. Up to now, a value of 6 has been proposed for temperate forests, but we lack information for Mediterranean forests. Experimental determination of N absorption on Quercus ilex seedlings in Spain suggests efficiency factors from 1 to 6. Based on these values, a sensitivity analysis for xNH₄ was performed and the NH₄N and NO₃N modeled dry deposition was compared with dry deposition estimated with independent methods (inferential modeling and washing of branches). At two sites in NE Spain under a milder Mediterranean climate, the best match was obtained for xNH4 = 6, corroborating results from European temperate forests. Based on this value, total DIN deposition was 12-13 kg N ha−1 y−1 at these sites. However, for a site in central Spain under drier conditions, variation of the NH4+ efficiency factor had little effect on DD estimates (which ranged from 2 to 2.6 kg N ha⁻Âč y⁻Âč with varying xNH₄); when added to wet deposition, this produced a total N deposition in the range 2.6-3.4 kg N ha⁻Âč y⁻Âč. Dry deposition was the predominant pathway for N, accounting for 60-80% of total deposition, while for base cations wet deposition dominated (55-65%). Nitrogen deposition values at the northwestern sites were close to the empirical critical load proposed for evergreen sclerophyllous Mediterranean forests (15-17 kg N ha⁻Âč y⁻Âč). When organic N deposition at these forests is added (3 kg N ha⁻Âč y⁻Âč), the total N input to the sites in NE Spain are close to the critical loads for Mediterranean evergreen oak forests

    Pressure-induced amorphization of YVO4:Eu3+ nanoboxes

    Full text link
    This is an author-created, un-copyedited version of an article published in Nanotechnology. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/0957-4484/27/2/025701A structural transformation from the zircon-type structure to an amorphous phase has been found in YVO4:Eu3+ nanoboxes at high pressures above 12.7 GPa by means of x-ray diffraction measurements. However, the pair distribution function of the high-pressure phase shows that the local structure of the amorphous phase is similar to the scheelite-type YVO4. These results are confirmed both by Raman spectroscopy and Eu3+ photoluminescence which detect the phase transition to a scheelite-type structure at 10.1 and 9.1 GPa, respectively. The irreversibility of the phase transition is observed with the three techniques after a maximum pressure in the upstroke of around 20 GPa. The existence of two D-5(0)-> F-7(0) photoluminescence peaks confirms the existence of two local environments for Eu3+, at least for the low-pressure phase. One environment is the expected for substituting Y3+ and the other is likely a disordered environment possibly found at the surface of the nanoboxes.This work has been performed under financial support from Spanish MINECO under the National Program of Materials (MAT2013-46649-C4-1/2/3/4-P) and the Consolider-Ingenio 2010 Program (MALTA CSD2007-00045). Funding by the Fundacion Caja Canarias (ENER-01) and the EU-FEDER funds is also acknowledged. JR-F thanks the Alexander von Humboldt Foundation for a postdoctoral fellowship and NS thanks the German Research Foundation (DFG) for financial support (Project RA2585/1-1). We acknowledge Diamond Light Source for time on beamline I15 under proposals EE3652 and EE6517. Parts of this research were carried out at the light source PETRA III at DESY (Hamburg), a member of the Helmholtz Association (HFG). We would like to thank H-P Liermann and W Morgenroth for assistance in using beamline P02.2.Ruiz Fuertes, J.; Gomis, O.; LeĂłn Luis, SF.; Schrodt, N.; ManjĂłn Herrera, FJ.; Ray, S.; SantamarĂ­a PĂ©rez, D.... (2016). Pressure-induced amorphization of YVO4:Eu3+ nanoboxes. Nanotechnology. 27(2):025701-1-025701-8. https://doi.org/10.1088/0957-4484/27/2/025701S025701-1025701-8272Piot, L., Le Floch, S., Cornier, T., Daniele, S., & Machon, D. (2013). Amorphization in Nanoparticles. The Journal of Physical Chemistry C, 117(21), 11133-11140. doi:10.1021/jp401121cZhang, F. X., Wang, J. W., Lang, M., Zhang, J. M., Ewing, R. C., & Boatner, L. A. (2009). High-pressure phase transitions ofScPO4andYPO4. Physical Review B, 80(18). doi:10.1103/physrevb.80.184114Lacomba-Perales, R., Errandonea, D., Meng, Y., & Bettinelli, M. (2010). High-pressure stability and compressibility ofAPO4(A=La, Nd, Eu, Gd, Er, and Y) orthophosphates: An x-ray diffraction study using synchrotron radiation. Physical Review B, 81(6). doi:10.1103/physrevb.81.064113Yuan, H., Wang, K., Li, S., Tan, X., Li, Q., Yan, T., 
 Zou., B. (2012). Direct Zircon-to-Scheelite Structural Transformation in YPO4 and YPO4:Eu3+ Nanoparticles Under High Pressure. The Journal of Physical Chemistry C, 116(46), 24837-24844. doi:10.1021/jp3088995Mishra, A. K., Garg, N., Pandey, K. K., Shanavas, K. V., Tyagi, A. K., & Sharma, S. M. (2010). Zircon-monoclinic-scheelite transformation in nanocrystalline chromates. Physical Review B, 81(10). doi:10.1103/physrevb.81.104109Wang, L., Yang, W., Ding, Y., Ren, Y., Xiao, S., Liu, B., 
 Mao, H. (2010). Size-Dependent Amorphization of NanoscaleY2O3at High Pressure. Physical Review Letters, 105(9). doi:10.1103/physrevlett.105.095701Mukherjee, S., Kim, K., & Nair, S. (2007). Short, Highly Ordered, Single-Walled Mixed-Oxide Nanotubes Assemble from Amorphous Nanoparticles. Journal of the American Chemical Society, 129(21), 6820-6826. doi:10.1021/ja070124cƞopu, D., Albe, K., Ritter, Y., & Gleiter, H. (2009). From nanoglasses to bulk massive glasses. Applied Physics Letters, 94(19), 191911. doi:10.1063/1.3130209Ozawa, L., & Itoh, M. (2003). Cathode Ray Tube Phosphors. Chemical Reviews, 103(10), 3835-3856. doi:10.1021/cr0203490Zhu, Y., Xu, W., Zhang, H., Wang, W., Tong, L., Xu, S., 
 Song, H. (2012). Highly modified spontaneous emissions in YVO4:Eu3+ inverse opal and refractive index sensing application. Applied Physics Letters, 100(8), 081104. doi:10.1063/1.3688167Khan, A. F., Haranath, D., Yadav, R., Singh, S., Chawla, S., & Dutta, V. (2008). Controlled surface distribution and luminescence of YVO4:Eu3+ nanophosphor layers. Applied Physics Letters, 93(7), 073103. doi:10.1063/1.2973163Cho, Y.-S., & Huh, Y.-D. (2011). Preparation of Transparent Red-Emitting YVO4:Eu Nanophosphor Suspensions. Bulletin of the Korean Chemical Society, 32(1), 335-337. doi:10.5012/bkcs.2011.32.1.335Jayaraman, A., Kourouklis, G. A., Espinosa, G. P., Cooper, A. S., & Van Uitert, L. G. (1987). A high-pressure Raman study of yttrium vanadate (YVO4) and the pressure-induced transition from the zircon-type to the scheelite-type structure. Journal of Physics and Chemistry of Solids, 48(8), 755-759. doi:10.1016/0022-3697(87)90072-2Wang, X., Loa, I., Syassen, K., Hanfland, M., & Ferrand, B. (2004). Structural properties of the zircon- and scheelite-type phases ofYVO4at high pressure. Physical Review B, 70(6). doi:10.1103/physrevb.70.064109ManjĂłn, F. J., RodrĂ­guez-HernĂĄndez, P., Muñoz, A., Romero, A. H., Errandonea, D., & Syassen, K. (2010). Lattice dynamics ofYVO4at high pressures. Physical Review B, 81(7). doi:10.1103/physrevb.81.075202Boehler, R. (2006). New diamond cell for single-crystal x-ray diffraction. Review of Scientific Instruments, 77(11), 115103. doi:10.1063/1.2372734Mao, H. K., Xu, J., & Bell, P. M. (1986). Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. Journal of Geophysical Research, 91(B5), 4673. doi:10.1029/jb091ib05p04673Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., & Hausermann, D. (1996). Two-dimensional detector software: From real detector to idealised image or two-theta scan. High Pressure Research, 14(4-6), 235-248. doi:10.1080/08957959608201408Holland, T. J. B., & Redfern, S. A. T. (1997). Unit cell refinement from powder diffraction data: the use of regression diagnostics. Mineralogical Magazine, 61(404), 65-77. doi:10.1180/minmag.1997.061.404.07Kraus, W., & Nolze, G. (1996). POWDER CELL – a program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. Journal of Applied Crystallography, 29(3), 301-303. doi:10.1107/s0021889895014920Toby, B. H. (2001). EXPGUI, a graphical user interface forGSAS. Journal of Applied Crystallography, 34(2), 210-213. doi:10.1107/s0021889801002242Qiu, X., Thompson, J. W., & Billinge, S. J. L. (2004). PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data. Journal of Applied Crystallography, 37(4), 678-678. doi:10.1107/s0021889804011744Chupas, P. J., Qiu, X., Hanson, J. C., Lee, P. L., Grey, C. P., & Billinge, S. J. L. (2003). Rapid-acquisition pair distribution function (RA-PDF) analysis. Journal of Applied Crystallography, 36(6), 1342-1347. doi:10.1107/s0021889803017564Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., BoĆŸin, E. S., Bloch, J., 
 Billinge, S. J. L. (2007). PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19(33), 335219. doi:10.1088/0953-8984/19/33/335219Trenque, I., Mornet, S., Duguet, E., & Gaudon, M. (2013). New Insights into Crystallite Size and Cell Parameters Correlation for ZnO Nanoparticles Obtained from Polyol-Mediated Synthesis. Inorganic Chemistry, 52(21), 12811-12817. doi:10.1021/ic402152fLangford, J. I., & Wilson, A. J. C. (1978). Scherrer after sixty years: A survey and some new results in the determination of crystallite size. Journal of Applied Crystallography, 11(2), 102-113. doi:10.1107/s0021889878012844Klotz, S., Chervin, J.-C., Munsch, P., & Le Marchand, G. (2009). Hydrostatic limits of 11 pressure transmitting media. Journal of Physics D: Applied Physics, 42(7), 075413. doi:10.1088/0022-3727/42/7/075413Jeong, I.-K., Proffen, T., Mohiuddin-Jacobs, F., & Billinge, S. J. L. (1999). Measuring Correlated Atomic Motion Using X-ray Diffraction. The Journal of Physical Chemistry A, 103(7), 921-924. doi:10.1021/jp9836978Frogley, M. D., Sly, J. L., & Dunstan, D. J. (1998). Pressure dependence of the direct band gap in tetrahedral semiconductors. Physical Review B, 58(19), 12579-12582. doi:10.1103/physrevb.58.12579Birch, F. (1978). Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300°K. Journal of Geophysical Research, 83(B3), 1257. doi:10.1029/jb083ib03p01257Popescu, C., Sans, J. A., Errandonea, D., Segura, A., Villanueva, R., & Sapiña, F. (2014). Compressibility and Structural Stability of Nanocrystalline TiO2 Anatase Synthesized from Freeze-Dried Precursors. Inorganic Chemistry, 53(21), 11598-11603. doi:10.1021/ic501571uChen, G., Stump, N. A., Haire, R. G., Peterson, J. R., & Abraham, M. M. (1992). Pressure-induced phase transition in YVO4:Eu3+: A luminescence study at high pressure. Journal of Physics and Chemistry of Solids, 53(10), 1253-1257. doi:10.1016/0022-3697(92)90241-5Rivera-LĂłpez, F., MartĂ­n, I. R., Da Silva, I., GonzĂĄlez-Silgo, C., RodrĂ­guez-Mendoza, U. R., LavĂ­n, V., 
 FernĂĄndez-Urban, J. (2006). Analysis of the Eu3+emission in a SrWO4laser matrix under pressure. High Pressure Research, 26(4), 355-359. doi:10.1080/08957950601105085Dieke, G. H., & Crosswhite, H. M. (1963). The Spectra of the Doubly and Triply Ionized Rare Earths. Applied Optics, 2(7), 675. doi:10.1364/ao.2.000675Lavı́n, V., Babu, P., Jayasankar, C. K., Martı́n, I. R., & Rodrı́guez, V. D. (2001). On the local structure of Eu3+ ions in oxyfluoride glasses. Comparison with fluoride and oxide glasses. The Journal of Chemical Physics, 115(23), 10935-10944. doi:10.1063/1.1420731Peacock, R. D. (s. f.). The intensities of lanthanide f ↔ f transitions. Rare Earths, 83-122. doi:10.1007/bfb0116556Oomen, E. W. J. L., & van Dongen, A. M. A. (1989). Europium (III) in oxide glasses. Journal of Non-Crystalline Solids, 111(2-3), 205-213. doi:10.1016/0022-3093(89)90282-2Song, H., Chen, B., Peng, H., & Zhang, J. (2002). Light-induced change of charge transfer band in nanocrystalline Y2O3:Eu3+. Applied Physics Letters, 81(10), 1776-1778. doi:10.1063/1.1501441Ray, S., LeĂłn-Luis, S. F., ManjĂłn, F. J., Mollar, M. A., Gomis, Ó., RodrĂ­guez-Mendoza, U. R., 
 LavĂ­n, V. (2014). Broadband, site selective and time resolved photoluminescence spectroscopic studies of finely size-modulated Y2O3:Eu3+ phosphors synthesized by a complex based precursor solution method. Current Applied Physics, 14(1), 72-81. doi:10.1016/j.cap.2013.07.02

    Nano-engineered electron–hole exchange interaction controls exciton dynamics in core–shell semiconductor nanocrystals

    Get PDF
    A strong electron–hole exchange interaction (EI) in semiconductor nanocrystals (NCs) gives rise to a large (up to tens of meV) splitting between optically active ('bright') and optically passive ('dark') excitons. This dark–bright splitting has a significant effect on the optical properties of band-edge excitons and leads to a pronounced temperature and magnetic field dependence of radiative decay. Here we demonstrate a nanoengineering-based approach that provides control over EI while maintaining nearly constant emission energy. We show that the dark–bright splitting can be widely tuned by controlling the electron–hole spatial overlap in core–shell CdSe/CdS NCs with a variable shell width. In thick-shell samples, the EI energy reduces to <250 ÎŒeV, which yields a material that emits with a nearly constant rate over temperatures from 1.5 to 300 K and magnetic fields up to 7 T. The EI-manipulation strategies demonstrated here are general and can be applied to other nanostructures with variable electron–hole overlap

    Subdiffraction, Luminescence-Depletion Imaging of Isolated, Giant, CdSe/CdS Nanocrystal Quantum Dots

    Get PDF
    Subdiffraction spatial resolution luminescence depletion imaging was performed with giant CdSe/14CdS nanocrystal quantum dots (g-NQDs) dispersed on a glass slide. Luminescence depletion imaging used a Gaussian shaped excitation laser pulse overlapped with a depletion pulse, shaped into a doughnut profile, with zero intensity in the center. Luminescence from a subdiffraction volume is collected from the central portion of the excitation spot, where no depletion takes place. Up to 92% depletion of the luminescence signal was achieved. An average full width at half-maximum of 40 ± 10 nm was measured in the lateral direction for isolated g-NQDs at an air interface using luminescence depletion imaging, whereas the average full width at half-maximum was 450 ± 90 nm using diffraction-limited, confocal luminescence imaging. Time-gating of the luminescence depletion data was required to achieve the stated spatial resolution. No observable photobleaching of the g-NQDs was present in the measurements, which allowed imaging with a dwell time of 250 ms per pixel to obtain images with a high signal-to-noise ratio. The mechanism for luminescence depletion is likely stimulated emission, stimulated absorption, or a combination of the two. The g-NQDs fulfill a need for versatile, photostable tags for subdiffraction imaging schemes where high laser powers or long exposure times are used

    Pbca-Type In2O3: the high-pressure post-corundum phase at room temperature

    Full text link
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Journal of Physical Chemistry C, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://dx.doi.org/10.1021/jp5061599High-pressure powder X-ray diffraction and Raman scattering measurements in cubic bixbyite-type indium oxide (c-In2O3) have been performed at room temperature. On increasing pressure c-In2O3 undergoes a transition to the Rh2O3-II structure but on decreasing pressure Rh2O3-II-type In2O3 undergoes a transition to a previously unknown phase with Pbca space group which is isostructural to Rh2O3-III. On further decrease of pressure, we observed a phase transition to the metastable corundum-type In2O3 near room conditions. Recompression of the metastable corundum-type In2O3 at room temperature leads to a transition to the Rh2O3-III phase, thus showing that the Rh2O3-III phase is the post-corundum phase at room temperature. Our results are supported by theoretical ab initio calculations. Furthermore, they show that the Rh2O3-III phase could be present in other sesquioxides, thus prompting to a revision of the pressure-temperature phase diagrams of sesquioxidesFinancial support by the Spanish MEC under Grant No. MAT2010-21270-C04-01/03/04, MAT2013-46649-C4-1/2/3-P, by MALTA Consolider Ingenio 2010 project (CSD2007-00045) and by Generalitat Valenciana (GVA-ACOMP-2013-012). Red Espanola de Supercomputacion (RES) and ALBA Synchrotron Light Source are also acknowledged. B.G.-D. and J.A.S. acknowledge financial support through the FPI program and Juan de la Cierva fellowship, respectively. We also thank J. L. Jorda for fruitful discussions. A.L.J.P. acknowledges financial support through Brazilian CNPq. A.S. expresses thanks to FEDER Grant UNLV10-3E-1253 for financial support.García-Domene, B.; Sans Tresserras, JÁ.; Gomis, O.; Manjón Herrera, FJ.; Ortiz, HM.; Errandonea, D.; Santamaría Pérez, D.... (2014). Pbca-Type In2O3: the high-pressure post-corundum phase at room temperature. Journal of Physical Chemistry C. 118(35):20545-20552. https://doi.org/10.1021/jp5061599S20545205521183
    • 

    corecore