184 research outputs found

    Monitoring of the Canales Dam and Its Control During Construction Period

    Get PDF
    This paper presents a study of the stress-deformation behaviour of the Canales Dam (Granada) during construction. The basis for this study has been the three dimensional (3D) finite elements method with hyperbolic material response. The analytical procedure used is presented and the study concludes with a comparative study of the results obtained from the calculation programme used and monitoring system\u27s measurements

    A controlled antibiotic release system to prevent orthopedic-implant associated infections: An in vitro study

    Get PDF
    A new device for local delivery of antibiotics is presented, with potential use as a drug-eluting fixation pin for orthopedic applications. The implant consists of a stainless steel hollow tubular reservoir packed with the desired antibiotic. Release takes place through several orifices previously drilled in the reservoir wall, a process that does not compromise the mechanical properties required for the implant. Depending on the antibiotic chosen and the number of orifices, the release profile can be tailored from a rapid release of the load (ca. 20 h) to a combination of rapid initial release and slower, sustained release for a longer period of time (ca. 200 h). An excellent bactericidal action is obtained, with 4-log reductions achieved in as little as 2 h, and total bacterial eradication in 8 h using 6-pinholed implants filled with cefazolin

    Macrofauna de invertebrados del Cretácico superior de la Depresión Central Asturiana

    Get PDF
    Se reporta y comenta la fauna de inocerámidos, rudistas, ammonites, braquiópodos y equmnidos recogida y localizada en yacimientos o series estratigráficas de detalle, durante los trabajos de campo de la tesis doctoral del primero de los autores (E.B.) sobre los seláceos del Cretácico de Asturias. La distribución, principalmente de inocerámidos y ammonites, permite identificar el Cenomaniense superior y el Turoniense inferior y medio. Se han reconocido rudistas del Turoniense superior y del Coniaciense, braquiópodos del Cenomaniense y del Santoniense inferior y un registro relativamente rico y variado de equínidos desde el Cenomaniense hasta el Coniaciense.The fauna collected and located on fossil localities or stratigraphical profiles, during the field work of the first author's doctoral thesis on the Cretaceous selachians from Asturias, is reported and commented. It includes inoceramids, rudists, ammonoids, brachiopods and echinoids. Distribution of, mainly inoceramids and ammonoids, allowed to identify the Upper Cenomanian and the Lower and Middle Turonian. LateTuronian and Coniacian rudists have been recognized, as well as Cenomanian and lower Santonian brachiopods and a quite rich and diversified record of echinoids ranging from Cenomanian to Coniacian

    Synergistic assembly of gold and copper-iron oxide nanocatalysts to promote the simultaneous depletion of glucose and glutathione

    Get PDF
    Glucose and glutathione (GSH) are key biomolecules for the regulation and growth of tumor cells. The use of inorganic nanocatalysts in biomedicine to target and deplete such specific molecules represents a novel and promising strategy against cancer. In this work, we present a ternary assembled nanohybrid based on Au and CuFe2O4 with the capability to simultaneously deplete glucose and GSH and generate reactive oxidative species (ROS) in a cascade process. We describe an example of a synergistic heterogeneous nanoarchitecture able to maintain the glucose oxidase-like activity of Au while preventing its deactivation in the presence of GSH. Au sites remain active due to the rapid response of the Cu–Fe co-catalyst to deplete GSH levels. This example of hybrid heterostructure represents an appealing alternative with dual-activity within the tumor microenvironment (TME) for potential anticancer therapy

    Incidents control in radiotherapy oncology

    Get PDF
    Primer pla de l'escut del monarca del s. XVI, conservat i ubicat a la porta de la UB. Mesura 1,60 x 2,20 metre si és de pedra sorrenca

    Fibroblasts activation and abnormal extracellular matrix remodelling as common hallmarks in three cancer-prone genodermatoses

    Get PDF
    Background. Recessive dystrophic epidermolysis bullosa (RDEB), Kindler syndrome (KS) and xeroderma pigmentosum complementation group C (XPC) are three cancer-prone genodermatoses whose causal genetic mutations cannot fully explain, on their own, the array of associated phenotypic manifestations. Recent evidence highlights the role of the stromal microenvironment in the pathology of these disorders. Objectives. To investigate, by means of comparative gene expression analysis, the role played by dermal fibroblasts in the pathogenesis of RDEB, KS and XPC. Methods. We conducted RNA-Seq analysis, which included a thorough examination of the differentially expressed genes, a functional enrichment analysis and a description of affected signalling circuits. Transcriptomic data were validated at the protein level in cell cultures, serum samples and skin biopsies. Results. Interdisease comparisons against control fibroblasts revealed a unifying signature of 186 differentially expressed genes and four signalling pathways in the three genodermatoses. Remarkably, some of the uncovered expression changes suggest a synthetic fibroblast phenotype characterized by the aberrant expression of extracellular matrix (ECM) proteins. Western blot and immunofluorescence in situ analyses validated the RNA-Seq data. In addition, enzyme-linked immunosorbent assay revealed increased circulating levels of periostin in patients with RDEB. Conclusions. Our results suggest that the different causal genetic defects converge into common changes in gene expression, possibly due to injury-sensitive events. These, in turn, trigger a cascade of reactions involving abnormal ECM deposition and underexpression of antioxidant enzymes. The elucidated expression signature provides new potential biomarkers and common therapeutic targets in RDEB, XPC and KS.This study was supported by grants from the Spanish Ministry of Economy and Competitiveness (SAF2013-43475R, SAF2017-88908-R and SAF2017-86810-R); from Instituto de Salud Carlos III and CIBERER, cofunded with European Regional Development Funds (ERDF) (PT13/0001/0007, PI14/00931, PI15/00716, PI15/00956, PT17/0009/0006 and PI17/01747); and from the European Union (HEALTH-F2-2011-261392 and H2020-INFRADEV-1-2015-1/ELIXIR-EXCELERATEref. 676559). Additional funding from Comunidad de Madrid (AvanCell-CM S2017/BMD-3692); Catalan Government (AGAUR 2014_SGR_603); ‘Fundacio' La Marató de TV3, 01331-30’; CERCA Programme/Generalitat de Catalunya; and ‘Fundación Científica de la Asociación Española Contra el Cáncer’, Spain

    Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice

    Get PDF
    Objective Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. Methods MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6−/−) mice. Results In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6−/− mice. Conclusions These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1

    Regional Genetic Structure in the Aquatic Macrophyte Ruppia cirrhosa Suggests Dispersal by Waterbirds

    Get PDF
    The evolutionary history of the genus Ruppia has been shaped by hybridization, polyploidisation and vicariance that have resulted in a problematic taxonomy. Recent studies provided insight into species circumscription, organelle takeover by hybridization, and revealed the importance of verifying species identification to avoid distorting effects of mixing different species, when estimating population connectivity. In the present study, we use microsatellite markers to determine population diversity and connectivity patterns in Ruppia cirrhosa including two spatial scales: (1) from the Atlantic Iberian coastline in Portugal to the Siculo-Tunisian Strait in Sicily and (2) within the Iberian Peninsula comprising the Atlantic-Mediterranean transition. The higher diversity in the Mediterranean Sea suggests that populations have had longer persistence there, suggesting a possible origin and/or refugial area for the species. The high genotypic diversities highlight the importance of sexual reproduction for survival and maintenance of populations. Results revealed a regional population structure matching a continent-island model, with strong genetic isolation and low gene flow between populations. This population structure could be maintained by waterbirds, acting as occasional dispersal vectors. This information elucidates ecological strategies of brackish plant species in coastal lagoons, suggesting mechanisms used by this species to colonize new isolated habitats and dominate brackish aquatic macrophyte systems, yet maintaining strong genetic structure suggestive of very low dispersal.Fundacao para a Cincia e Tecnologia (FCT, Portugal) [PTDC/MAR/119363/2010, BIODIVERSA/0004/2015, UID/Multi/04326/2013]Pew FoundationSENECA FoundationMurcia Government, Spain [11881/PI/09]FCT Investigator Programme-Career Development [IF/00998/2014]Spanish Ministry of Education [AP2008-01209]European Community [00399/2012]info:eu-repo/semantics/publishedVersio

    Maresin 1 activates brown adipose tissue and promotes browning of white adipose tissue in mice

    Get PDF
    [Objective]: Maresin 1 (MaR1) is a docosahexaenoic acid-derived proresolving lipid mediator with insulin-sensitizing and anti-steatosis properties. Here, we aim to unravel MaR1 actions on brown adipose tissue (BAT) activation and white adipose tissue (WAT) browning. [Methods]: MaR1 actions were tested in cultured murine brown adipocytes and in human mesenchymal stem cells (hMSC)-derived adipocytes. In vivo effects of MaR1 were tested in diet-induced obese (DIO) mice and lean WT and Il6 knockout (Il6−/−) mice. [Results]: In cultured differentiated murine brown adipocytes, MaR1 reduces the expression of inflammatory genes, while stimulates glucose uptake, fatty acid utilization and oxygen consumption rate, along with the upregulation of mitochondrial mass and genes involved in mitochondrial biogenesis and function and the thermogenic program. In Leucine Rich Repeat Containing G Protein-Coupled Receptor 6 (LGR6)-depleted brown adipocytes using siRNA, the stimulatory effect of MaR1 on thermogenic genes was abrogated. In DIO mice, MaR1 promotes BAT remodeling, characterized by higher expression of genes encoding for master regulators of mitochondrial biogenesis and function and iBAT thermogenic activation, together with increased M2 macrophage markers. In addition, MaR1-treated DIO mice exhibit a better response to cold-induced BAT activation. Moreover, MaR1 induces a beige adipocyte signature in inguinal WAT of DIO mice and in hMSC-derived adipocytes. MaR1 potentiates Il6 expression in brown adipocytes and BAT of cold exposed lean WT mice. Interestingly, the thermogenic properties of MaR1 were abrogated in Il6−/− mice. [Conclusions]: These data reveal MaR1 as a novel agent that promotes BAT activation and WAT browning by regulating thermogenic program in adipocytes and M2 polarization of macrophages. Moreover, our data suggest that LGR6 receptor is mediating MaR1 actions on brown adipocytes, and that IL-6 is required for the thermogenic effects of MaR1.The authors received support for the current study from Ministerio de Ciencia e Innovación/Agencia Estatal de Investigación, Spain, MCIN/AEI/10.13039/501100011033 (grants BFU2012-36089 to MJM-A; BFU2015-65937-R to MJM-A, SL-C; PID2019-106982RB-I00 to MJM-A; SAF2017-83813-C3-1-R to LH and PID2021-122766OB-I00 to AMV), cofinanced by the European Regional Development Fund (ERDF); Dept. of Health, Navarra Government (67–2015) to MJM-A; Merck Health Foundation to LH; CIBEROBN (CB12/03/30002; CB06/03/0001; CB06/03/0025) and CIBERDEM (CB07/08/0033) from ISCIII (Spain). “Juan de la Cierva” Grant to MF-G (IJCI-2016-30025) funded by MCIN/AEI/10.13039/501100011033. Predoctoral grant to LML (Asociación de Amigos, Universidad de Navarra/“la Caixa” Banking Foundation) and to LM-F (FPI, BES-2013-064970). S.Q.-V. is supported by a fellowship from the Vicente Lopez Program (Eurecat).Peer reviewe
    corecore