3,676 research outputs found
Direct evaluation of the isotope effect within the framework of density functional theory for superconductors
Within recent developments of density functional theory, its numerical implementation and of the superconducting density functional theory is nowadays possible to predict the superconducting critical temperature, Tc, with sufficient accuracy to anticipate the experimental verification. In this paper we present an analytical derivation of the isotope coefficient within the superconducting density functional theory. We calculate the partial derivative of Tc with respect to atomic masses. We verified the final expression by means of numerical calculations of isotope coefficient in monatomic superconductors (Pb) as well as polyatomic superconductors (CaC6). The results confirm the validity of the analytical derivation with respect to the finite difference methods, with considerable improvement in terms of computational time and calculation accuracy. Once the critical temperature is calculated (at the reference mass(es)), various isotope exponents can be simply obtained in the same run. In addition, we provide the expression of interesting quantities like partial derivatives of the deformation potential, phonon frequencies and eigenvectors with respect to atomic masses, which can be useful for other derivations and applications
Coupling between 4f and itinerant electrons in SmFeAsO1-xFx (0.15 < x < 0.2) superconductors: an NMR study
F NMR measurements in SmFeAsOF, for ,
are presented. The nuclear spin-lattice relaxation rate increases upon
cooling with a trend analogous to the one already observed in
CeCuAu, a quasi two-dimensional heavy-fermion intermetallic
compound with an antiferromagnetic ground-state. In particular, the behaviour
of the relaxation rate either in SmFeAsOF or in
CeCuAu can be described in the framework of the self-consistent
renormalization theory for weakly itinerant electron systems. Remarkably, no
effect of the superconducting transition on F is detected, a
phenomenon which can hardly be explained within a single band model.Comment: 4 figure
Critical chain length and superconductivity emergence in oxygen-equalized pairs of YBa2Cu3O6.30
The oxygen-order dependent emergence of superconductivity in YBa2Cu3O6+x is
studied, for the first time in a comparative way, on pair samples having the
same oxygen content and thermal history, but different Cu(1)Ox chain
arrangements deriving from their intercalated and deintercalated nature.
Structural and electronic non-equivalence of pairs samples is detected in the
critical region and found to be related, on microscopic scale, to a different
average chain length, which, on being experimentally determined by nuclear
quadrupole resonance (NQR), sheds new light on the concept of critical chain
length for hole doping efficiency.Comment: 7 RevTex pages, 2 Postscript figures. Submitted to Phys. Rev.
Mitochondrial DNA lineages of Italian Giara and Sarcidano horses
Giara and Sarcidano are 2 of the 15 extant native Italian horse breeds with limited dispersal capability that originated from a larger number of individuals. The 2 breeds live in two distinct isolated locations on the island of Sardinia. To determine the genetic structure and evolutionary history of these 2 Sardinian breeds, the first hypervariable segment of the mitochondrial DNA (mtDNA) was sequenced and analyzed in 40 Giara and Sarcidano horses and compared with publicly available mtDNA data from 43 Old World breeds. Four different analyses, including genetic distance, analysis of molecular variance, haplotype sharing, and clustering methods, were used to study the genetic relationships between the Sardinian and other horse breeds. The analyses yielded similar results, and the FST values indicated that a high percentage of the total genetic variation was explained by between-breed differences. Consistent with their distinct phenotypes and geographic isolation, the two Sardinian breeds were shown to consist of 2 distinct gene pools that had no gene flow between them. Giara horses were clearly separated from the other breeds examined and showed traces of ancient separation from horses of other breeds that share the same mitochondrial lineage. On the other hand, the data from the Sarcidano horses fit well with variation among breeds from the Iberian Peninsula and North-West Europe: genetic relationships among Sarcidano and the other breeds are consistent with the documented history of this breed
Effective models of nonsingular quantum black holes
We investigate how the resolution of the singularity problem for the Schwarzschild black hole could be
related to the presence of quantum gravity effects at horizon scales. Motivated by the analogy with the
cosmological Schwarzschild-de Sitter solution, we construct a broad class of nonsingular, static,
asymptotically flat black-hole solutions with a de Sitter (dS) core, sourced by an anisotropic fluid, which
effectively encodes the quantum corrections. The latter are parametrized by a single length-scale l, which
has a dual interpretation as an effective “quantum hair” and as the length-scale resolving the classical
singularity. Depending on the value of l, these solutions can have two horizons, be extremal (when the two
horizons merge) or be horizonless exotic stars. We also investigate the thermodynamic behavior of our
black-hole solutions and propose a generalization of the area law in order to account for their entropy. We
find a second-order phase transition near extremality, when l is of order of the classical Schwarzschild
radius RS. Black holes with l ∼ RS are thermodynamically preferred with respect to those with l ≪ RS,
supporting the relevance of quantum corrections at horizon scales. We also find that the extremal
configuration is a zero-temperature, zero-entropy state with its near-horizon geometry factorizing as
AdS2 × S2, signalizing the possible relevance of these models for the information paradox. Finally, we
show that the presence of quantum corrections with l ∼ RS have observable phenomenological signatures
in the photon orbits and in the quasinormal modes (QNMs) spectrum. In particular, in the near-extremal
regime, the imaginary part of the QNMs spectrum scales with the temperature as c1=l þ c2lT2
H, while it
goes to zero linearly in the near-horizon limit. Our general findings are confirmed by revisiting two already
known models, which are particular cases of our general class of models, namely the Hayward and
Gaussian-core black holes
Elemental Phosphorus: structural and superconducting phase diagram under pressure
Pressure-induced superconductivity and structural phase transitions in
phosphorous (P) are studied by resistivity measurements under pressures up to
170 GPa and fully crystal structure and superconductivity
calculations up to 350 GPa. Two distinct superconducting transition temperature
(T) vs. pressure () trends at low pressure have been reported more
than 30 years ago, and for the first time we are able to reproduce them and
devise a consistent explanation founded on thermodynamically metastable phases
of black-phosphorous. Our experimental and theoretical results form a single,
consistent picture which not only provides a clear understanding of elemental P
under pressure but also sheds light on the long-standing and unsolved
superconductivity trend. Moreover, at higher pressures we predict a
similar scenario of multiple metastable structures which coexist beyond their
thermodynamical stability range. Metastable phases of P experimentally
accessible at pressures above 240 GPa should exhibit T's as high as 15 K,
i.e. three times larger than the predicted value for the ground-state crystal
structure. We observe that all the metastable structures systematically exhibit
larger transition temperatures than the ground-state ones, indicating that the
exploration of metastable phases represents a promising route to design
materials with improved superconducting properties.Comment: 14 pages, 4 figure
- …