431 research outputs found

    ???????????? ????????? ???????????? ??? ????????? ?????? ??????

    Get PDF
    Department of Computer Science and EngineeringA large-scale disaster such as earthquakes and tsunami can cause billion-dollar destruction to a city and kill many people. To mitigate the dead troll, fast disaster response to rescue survivors in a disaster zone is of paramount importance. However, it is difficult to find the location of the injured people in a disaster zone due to the debris and smoke in collapsed buildings as well as the disruption of communication networks. This can cause poor decisions of the disaster response team about where to deploy the rescue personnel and allocate the resource. Therefore, we propose to develop an AI system to predict the location of injured people in a disaster area. In this research, our system has three major parts: (1) the prediction of the density of injured people in a gridand (2) the strategy of the rescue team to search for injured peopleand (3) the deployment the rescue team to search the location of the most density injured people area according to the first and second part. In the first part, we developed a deep learning software package that consists of state-of-the-art deep learning techniques such as attention module and data annotation to predict the density of injured civilians. Our work uses a disaster simulator called RoboCup Rescue Simulation (RCRS). To predict the density of injured people in RCRS, we train the machine learning model using the two cases of the image data: (1) single image frame such as a satellite imageand (2) multiple image sequence frame such as disaster video clip. Furthermore, we evaluate our ML model in the other two domains: (1) the prediction of the location of crime in Chicagoand (2) the prediction of the location of RSNA Pneumonia. In the second part, we propose the Treasure Hunt Problem. In RCRS, the rescue team has to search more than one injured people and it is a complicated multi-agent problem. Therefore, study a simpler problem called the Treasure Hunt Problem, in which there is only one rescue crew search the only one injured civilian. In this problem, we assume that the location of the treasure is determined based on the probability distribution, and the ML model predicts the distribution of probability that treasure exists for each coordinate within the map. To solve this problem, we propose two search strategies that makes use of the ML model to improve the effectiveness of a search mission: (1) the probabilistic greedy search that the hunter searches preferentially for the cell with the highest probability of existing treasure given by ML modeland (2) the probabilistically admissible heuristic A* search that the hunter searches the cell determined by heuristic A* search with the probability of existing treasure given by ML model. In the last part, we merge the first and second parts to search for the location of the most density injured people area. To predict the location, we predict the number of injured people with several ML models used in the first part and we convert the injured people density predicted to the probability distribution. And the rescue team search the most density injured people area according to the search strategy of the second part based on this probability distributionclos

    Bloch-mode analysis for retrieving effective parameters of metamaterials

    Get PDF
    We introduce a new approach for retrieving effective parameters of metamaterials based on the Bloch-mode analysis of quasi-periodic composite structures. We demonstrate that, in the case of single-mode propagation, a complex effective refractive index can be assigned to the structure, being restored by our method with a high accuracy. We employ both surface and volume averaging of the electromagnetic fields of the dominating (fundamental) Bloch modes to determine the Bloch and wave impedances, respectively. We discuss how this method works for several characteristic examples, and demonstrate that this approach can be useful for retrieval of both material and wave effective parameters of a broad range of metamaterials.Comment: 12 pages, 10 figure

    Slow-light and evanescent modes at interfaces in photonic crystal waveguides: optimal extraction from experimental near-field measurements

    Get PDF
    We develop a systematic approach for simultaneous extraction of the dispersion relations and profiles of multiple modes in periodic waveguides though a special global optimization procedure applied to near-field electric field measurements in the waveguide plane. We apply this method to perform in-depth analysis of experimental data on wave propagation close to an interface between waveguide sections with different dispersion characteristics, and we successfully identify several modes contributing to the experimentally measured fields. We find clear evidence that when the group velocity is reduced across the interface, evanescent modes that facilitate the excitation of propagating slow-light waves appear, confirming previous theoretical predictions. (C) 2011 Optical Society of AmericaPublisher PDFPeer reviewe

    Dispersionless tunneling of slow light in antisymmetric photonic crystal couplers

    No full text
    We suggest a novel and general approach to the design of photonic-crystal directional couplers operating in the slow-light regime. We predict, based on a general symmetry analysis, that robust tunneling of slow-light pulses is possible between antisymmetrically coupled photonic crystal waveguides. We demonstrate, through Bloch mode frequencydomain and finite-difference time-domain (FDTD) simulations that, for all pulses with strongly reduced group velocities at the photonic band-gap edge, complete switching occurs at a fixed coupling length of just a few unit cells of the photonic crystal

    Sizeable suppression of thermal Hall effect upon isotopic substitution in strontium titanate

    Full text link
    We report measurements of the thermal Hall effect in single crystals of both pristine and isotopically substituted strontium titanate. We discovered a two orders of magnitude difference in the thermal Hall conductivity between SrTi16O3SrTi^{16}O_3 and 18O^{18}O-enriched SrTi18O3SrTi^{18}O_3 samples. In most temperature ranges, the magnitude of thermal Hall conductivity (Îșxy\kappa_{xy}) in SrTi18O3SrTi^{18}O_3 is proportional to the magnitude of the longitudinal thermal conductivity (Îșxx\kappa_{xx}), which suggests a phonon-mediated thermal Hall effect. However, they deviate in the temperature of their maxima, and the thermal Hall angle ratio (∣Îșxy/Îșxx∣|\kappa_{xy}/\kappa_{xx}|) shows anomalously decreasing behavior below the ferroelectric Curie temperature TcT_c ~25K25 K. This observation suggests a new underlying mechanism, as the conventional scenario cannot explain such differences within the slight change in phonon spectrum. Notably, the difference in magnitude of thermal Hall conductivity and rapidly decreasing thermal Hall angle ratio in SrTi18O3SrTi^{18}O_3 is correlated with the strength of quantum critical fluctuations in this displacive ferroelectric. This relation points to a link between the quantum critical physics of strontium titanate and its thermal Hall effect, a possible clue to explain this example of an exotic phenomenon in non-magnetic insulating systems.Comment: 11 pages, 4 figures, accepted for publication in Physical Review Letter

    Mechanism of polypurine tract primer generation by HIV-1 reverse transcriptase

    Get PDF
    HIV-1 reverse transcriptase (HIV-1 RT) possesses both DNA polymerase activity and RNase H activity that act in concert to convert single-stranded RNA of the viral genome to double-stranded DNA that is then integrated into the DNA of the infected cell. Reverse transcriptase-catalyzed reverse transcription critically relies on the proper generation of a polypurine tract (PPT) primer. However, the mechanism of PPT primer generation and the features of the PPT sequence that are critical for its recognition by HIV-1 RT remain unclear. Here, we used a chemical crosslinking method together with MD simulations and single-molecule assays to study the mechanism of PPT primer generation. We found that the PPT was specifically and properly recognized within covalently tethered HIV-1 RT-nucleic acid complexes. These findings indicated that recognition of the PPT occurs within a stable catalytic complex after its formation. We found that this unique recognition is based on two complementary elements that rely on the PPT sequence: RNase H sequence preference and incompatibility of the poly-rA/dT tract of the PPT with the nucleic acid conformation that is required for RNase H cleavage. The latter results from rigidity of the poly-rA/dT tract and leads to base-pair slippage of this sequence upon deformation into a catalytically relevant geometry. In summary, our results reveal an unexpected mechanism of PPT primer generation based on specific dynamic properties of the polyrA/dT segment and help advance our understanding of the mechanisms in viral RNA reverse transcription

    Slow-light switching in nonlinear Bragg-grating coupler

    Get PDF
    We study propagation and switching of slow-light pulses in nonlinear couplers with phase-shifted Bragg gratings. We demonstrate that power-controlled nonlinear self-action of light can be used to compensate dispersion-induced broadening of pulses through the formation of gap solitons, to control pulse switching in the coupler, and to tune the propagation velocity.Comment: 3 pages, 4 figure

    Observaton of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides

    Get PDF
    We report the experimental observation of tunneling of slow and fast electromagnetic modes in coupled periodic waveguides shifted longitudinally by half of modulation period. According to the symmetry analysis, such a coupler supports two electromagnetic modes with exactly matched slow or fast group velocities but different phase velocities for frequencies close to the edge of the photonic band. We confirm the predicted properties of the modes by directly extracting their dispersion and group velocities from the near-field measurements using specialized Bloch-wave spectral analysis method.This work was supported by the Australian Research Council

    Nonlinear spectral-spatial control and localization of supercontinuum radiation

    No full text
    We present the first observation of spatiospectral control and localization of supercontinuum light through the nonlinear interaction of spectral components in extended periodic structures. We use an array of optical waveguides in a LiNbO3 crystal and employ the interplay between diffraction and nonlinearity to dynamically control the output spectrum of the supercontinuum radiation. This effect presents an efficient scheme for optically tunable spectral filtering of supercontinua

    Paired modes of heterostructure cavities in photonic crystal waveguides with split band edges

    Get PDF
    We investigate the modes of double heterostructure cavities where the underlying photonic crystal waveguide has been dispersion engineered to have two band-edges inside the Brillouin zone. By deriving and using a perturbative method, we show that these structures possess two modes. For unapodized cavities, the relative detuning of the two modes can be controlled by changing the cavity length, and for particular lengths, a resonant-like effect makes the modes degenerate. For apodized cavities no such resonances exist and the modes are always non-degenerate. © 2010 Optical Society of America
    • 

    corecore