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We develop a systematic approach for simultaneous extraction of the dispersion relations and profiles of multiple
modes in periodic waveguides though a special global optimization procedure applied to near-field electric field
measurements in thewaveguide plane.We apply this method to perform in-depth analysis of experimental data on
wave propagation close to an interface between waveguide sections with different dispersion characteristics, and
we successfully identify several modes contributing to the experimentally measured fields. We find clear evidence
that when the group velocity is reduced across the interface, evanescent modes that facilitate the excitation of
propagating slow-light waves appear, confirming previous theoretical predictions. © 2011 Optical Society of
America
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1. INTRODUCTION
Periodically modulated optical waveguides offer new possibi-
lities for controlling the propagation of light. Resonant scat-
tering from periodic modulations can be used to tailor the
dispersion, enabling, in particular, a dramatic modification
of the group velocity and realization of slow-light propagation.
Such fundamental effects can be directly visualized in experi-
ments with near-field measurements, which can be used to
recover the amplitude and phase of the electric field at all lo-
cations in the plane of the waveguide [1]. This information can
then be used to determine the dispersion characteristics and
spatial profiles of the guided modes.

A commonly used approach to dispersion extraction is
through spatial Fourier transform (SFT) of the field profiles,
because peaks in the Fourier spectra correspond to the
wavenumbers of guided modes [2]. Such analysis is valuable
for studying complex dispersion features such as turning, in-
flection, and anticrossing points [3,4]. However, there exists
a fundamental limitation on results obtained with SFT:
Δk ≥ 2π=L, where Δk is the resolution of the wavenumber
and L is the structure length. Therefore, accurate dispersion
results can only be obtained for long waveguides, extending
over many periods of the underlying photonic structure. An-
other limitation of the SFT method is that it is difficult to ex-
tract information on the dispersion of evanescent waves,
which may play an important role close to the structure
boundaries or interfaces between different waveguides. For

example, evanescent waves enable efficient excitation of
slow-light modes in photonic crystal waveguides without a
transition region [5]. Moreover, all waves have decaying am-
plitudes in lossy media such as metal–dielectric metamaterial
and plasmonic structures.

Alternative methods for dispersion extraction have been
developed to overcome the shortcomings of the SFT method.
An interference pattern of two counterpropagating modes in
photonic crystals was used to extract their wavenumbers [6].
It was shown that in metamaterial structures, the effective re-
fractive index can be determined through the extracted phase
velocity of a single propagating or evanescent wave [7,8].
However, these techniques are not applicable in the presence
of multiple propagating or evanescent modes.

Recently, it was demonstrated that dispersion extraction in
multimode waveguides with, in principle, unbounded resolu-
tion is possible even for short waveguide sections [9,10], using
approaches based on high-resolution spectral methods pre-
viously developed for the analysis of temporal dynamics
[11,12]. We have since introduced an important generalization
of such methods by taking into account the spatial symmetry
properties of modes in periodic waveguides [13]. It was shown
that in addition to the dispersion relations, it is possible to
extract the spatial profiles of all guided modes, including
arbitrary combinations of propagating and evanescent waves.
The method was demonstrated by application to numerical
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simulation data, where artificial noise was introduced to simu-
late experimental conditions.

In this paper, we further extend the method by formulating
the global optimization procedure, which is most suitable for
extracting the dispersion characteristics of multiple modes si-
multaneously for a range of frequencies. This enables more
accurate determination of the group velocity and higher order
dispersion, compared to the previously considered [13] local
optimization for individual frequencies.

We apply the extraction method to experimental near-field
measurement data, performed for a set of photonic crystal
waveguides. The various photonic crystal waveguides were
engineered to exhibit different dispersion properties in the
slow-light regime. For each sample, we successfully extract
the dispersion through a global optimization procedure, and
we show that the values of mismatch between the measured
and reconstructed fields are of the order of 10% or less. The
extracted dispersion curves are also found to be in excellent
agreement with direct numerical modeling of different sample
designs. Additionally, we extract the dispersion and profiles of
evanescent waves. We find that the amplitudes and decay
rates of evanescent waves excited at the waveguide boundary
increase when the propagating mode is slowed down, in
agreement with the theoretical predictions [5].

The paper is organized as follows. We formulate the math-
ematical extraction procedure in Section 2. Then in Section 3
we apply the method to extract the dispersion and determine
the individual mode profiles using experimentally measured
near-field profiles in a set of photonic crystal waveguides with
varying dispersion characteristics in the slow-light regime.
Finally, we formulate conclusions in Section 4.

2. DISPERSION EXTRACTION METHOD
In this section, we formulate the method for the extraction
of mode dispersion and the profiles based on near-field
measurements of the electric field in periodic waveguides.
In Subsection 2.A, we review the translational symmetry prop-
erties of modes in periodic waveguides, which are relevant for
our analysis. Then in Subsection 2.B we review the extraction
procedure based on local optimization for individual frequen-
cies. Finally, in Subsection 2.C we formulate the global opti-
mization approach for the simultaneous dispersion extraction
over a range of frequencies.

A. Symmetries of Modes in Periodic Waveguides
Let us consider a periodic waveguide section, where the light
propagation in a particular frequency range is primarily deter-
mined by a finite total number of guided modes (M). The value
of M can be established based on numerical modeling, taking
into account both propagating and evanescent waves. Be-
cause each of the modes of a periodic waveguide satisfies
the Bloch theorem [14], the complex electric field envelope
of a waveguide mode with the index m at the frequency ω
can be expressed as

ψmðr;ωÞ expðikmz=dÞ; ð1Þ

where km are the complex Bloch wavenumbers; r ¼ ðx; y; zÞ,
where x and y are the orthogonal directions transverse to the
waveguide and z is the direction of periodicity; d is the wave-
guide period; and ψm are the periodic Bloch-wave envelope

functions: ψmðzÞ ¼ ψmðzþ dÞ. Then the total field inside
the waveguide can be presented as a linear superposition
of M guided modes with amplitudes am:

Eðr;ωÞ ¼
XM

m¼1

amψmðr;ωÞ expðikmz=dÞ þwðr;ωÞ: ð2Þ

Here, wðr;ωÞ can account for the radiation field due to the
excitation of nonguided waves and for vanishingly small eva-
nescent waves that are excluded from consideration. This
term can also appear due to noise in the experimental mea-
surements. It can be interpreted as a measure of the mismatch
between the measured field and the superposition of the
extracted modes.

B. Locally Optimal Extraction at Individual Frequencies
To begin the procedure for the simultaneous extraction of the
wavenumbers and profiles of the guided modes at a particular
frequency, we follow Ref. [13] and separate the spatial domain
into a number of unit cells, zmin þ ðn − 1Þd ≤ z < zmin þ nd,
where n ¼ 1:N and N is the number of periods in the wave-
guide section. Let us denote with

Unðr;ωÞ ¼ Eðx; y; zþ ðn − 1Þd;ωÞ; ð3Þ

Amðr;ωÞ ¼ amψmðr;ωÞ expðikmz=dÞ; ð4Þ

wnðr;ωÞ ¼ wðx; y; zþ ðn − 1Þd;ωÞ: ð5Þ

Then, taking into account the periodicity of Bloch-wave
envelopes, Eq. (2) can be written as

Unðr;ωÞ ¼
XM

m¼1

Amðr;ωÞ exp½ikmðn − 1Þ� þwnðr;ωÞ; ð6Þ

where r belongs to the first unit cell.
If one considers this relation only for a single point r in the

unit cell, it becomes mathematically equivalent to the pro-
blems considered in the spectral analysis of temporal series
[11,12], and high-resolution spectral methods can be used
to extract the mode wavenumbers [10]. However, the special
property of periodic waveguides is that Eq. (6) needs to be
satisfied simultaneously for all spatial locations r in the unit
cell. This allows us to determine the values of km and Amðr;ωÞ,
provided that the number of measurements exceeds the num-
ber of unknowns: N × Np ≥ M × Np þMk, where Np is the
number of measurement points per unit cell and Mk is the
number of independent wavenumber values [13].

For each frequency ω, we seek the values of km that provide
the most accurate description of the whole measured field,
and we apply the least-squares method to find a minimum
of the functional

W ¼
P
r

P
N
n¼1 jwnj2

P
r

P
N
n¼1 jUnj2

; ð7Þ

where summation
P

r is performed over all sampling points in
one unit cell. For a given fkmg, the minimum WAðfkmgÞ ¼
minA W is achieved when
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∂W
∂Am

¼ ∂W
∂A�

m
¼ 0: ð8Þ

It follows that for each point r in a unit cell, the optimal
amplitudes satisfy the linear matrix equation

CH · C · ~Aðr;ωÞ ¼ CH · ~Uðr;ωÞ; ð9Þ

where the components of vector ~Aðr;ωÞ are the optimal
amplitude values, the components of the matrix C are
Cnp ¼ exp½ikpðn − 1Þ�, and vector ~Uðr;ωÞ components are
Unðr;ωÞ for p ¼ 1:M and n ¼ 1:N .

The minimization procedure is illustrated in Fig. 1. It starts
with an initial guess for km, from which Am is obtained by
using Eq. (9). Then wn can be calculated from Eq. (6), and
the process is repeated for every point r in a unit cell to de-
termine W from Eq. (7). The entire process can be combined
into a single expression as

WAðfkmgÞ ¼ WA¼~A ¼ 1 −

P
r

~UHðr;ωÞ · C · ~Aðr;ωÞ
P
r

~UHðr;ωÞ · ~Uðr;ωÞ : ð10Þ

We can numerically find the absolute minimum Wmin ¼
minfkmg WA (note that, by definition, WA is real and positive),
for example, by using the “fminsearch” function in MATLAB.
The value ofWmin is normalized to the net energy and gives an
indication of the accuracy or mismatch.

C. Globally Optimal Extraction across
a Frequency Range
The procedure described above in Subsection 2.B enables
one to extract the wavenumbers and amplitudes of guided
modes for each ω. However, in experimental data, the noise
level can vary widely between different frequencies, espe-
cially if the group velocity has a strong frequency dependence,
as is the case in the examples presented in Section 3 below.
This can dramatically reduce the accuracy for determining
group velocity and higher order dispersion characteristics,
which are defined through the derivatives of the dispersion
curves. In order to overcome this issue, we suggest here
a globally optimal extraction procedure, which recovers
dispersion properties simultaneously across a range of
frequencies.

To perform the global extraction, we first identify the ex-
pected general shape of the dispersion curves. Suppose that
for the considered frequency range, dispersion of mode num-
ber m can be approximated by Taylor expansion, i.e.,

ωmðkÞ≃
Xjm

j¼0

QðjÞ
m kj: ð11Þ

Here the number of terms jm can be chosen based on the most
suitable polynomial fitting: linear (jm ¼ 1), quadratic (jm ¼ 2),
or cubic (jm ¼ 3). By inverting Eq. (11), we can determine km
as a function of frequency ω (a particular branch will need to
be chosen based on physical considerations). The significance
of this transformation is that the modal dispersion kmðω; fQgÞ
can be fully described by the same set of parameters fQg for
all values of ω in the data. Thus, instead of extracting km for

each ω one at a time, we can perform a single global optimiza-
tion and extract km for all ω:

hWminðωÞiω ¼ minfQghWA½ω; fkmðω; QÞg�iω; ð12Þ

where < · >ω denotes averaging over a set of frequencies ω.

3. DISPERSION AND MODE PROFILE
EXTRACTION FROM NEAR-FIELD
EXPERIMENTAL MEASUREMENTS
In this section we apply the Bloch mode extraction techniques
described in the previous section to experimental near-field
optical measurements of silicon photonic crystal waveguides.

Fig. 1. (Color online) Procedure for determining optimal km at a gi-
ven frequency ωj is shown in steps. Alternatively, km can be deter-
mined for all ω in a single global minimization by calculating WðωÞ
for every ω then minimizing the average of WðωÞ.
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A. Dispersion-Engineered Photonic Crystal Waveguides
In order to demonstrate the ability of the general methods
introduced in Section 2 above to extract the dispersion prop-
erties and mode profiles of multiple propagating and evanes-
cent modes, we have specially designed the photonic crystal
waveguides by locally modifying the lattice geometry on
either side of the waveguide [15–17]. Specifically, following
the previous analysis [5], we have engineered waveguides sup-
porting slow-light modes away from the edge of the Brillouin
zone, because in such structures both the propagating and
evanescent modes can be simultaneously excited at the wave-
guide boundary [5].

We present results for three different geometries where the
waveguide dispersion was engineered by shifting two rows of
holes on each side of the waveguide parallel to the waveguide
axis, as illustrated in Figs. 2(d), 3(d), and 4(d). The first rows
were moved by p1 ¼ 0:3 d, and second rows by p2 ¼ 0:375d,
0:4d and 0:425d, respectively, in the same direction. These
values were chosen based on 3D plane-wave dispersion cal-
culations using the MIT photonic bands software package
[18] in order to obtain progressively more “extreme” disper-
sion features in the slow-light region; see the numerically cal-
culated dispersion curves shown with dotted lines labeled “p”
in Figs. 2(a), 3(a), and 4(a), where the slow-light regime is rea-
lized at wavenumbers around kd=2π ≃�0:6. The first two
waveguides (Figs. 2 and 3) support a single propagating
TE-polarized mode at all wavelengths of interest, and a nar-
row slow-light region corresponding to an inflection point
in the dispersion curve. The third waveguide (Fig. 4) has a
more complex dispersion curve: the slow-light region has
been further distorted to introduce two turning points where
the group velocity is zero and a region between them that sup-
ports three propagating modes.

The dispersion curves in Figs. 2(a) and 3(a) are similar to
those studied in Ref. [5], where it was shown that very effi-
cient excitation of slow modes at dispersion inflection points
is possible without a transition region. Such efficient excita-
tion is enabled by weakly evanescent modes that assist in
mode matching at the interface, but do not transmit any
power. To provide the required “fast” mode from which to
couple to the slow mode, the fabricated structures were de-
signed to include on either end of the waveguide a short
10-period section where the lattice period is increased by
30nm (to 450 nm) in the direction of the waveguide. This
waveguide section supports a mode with a group-velocity
of approximately c=5 in the studied wavelength range. The
complex shape of the dispersion curves and the presence
of the evanescent modes make it an ideal case to test the
advanced analysis techniques presented in this paper.

The photonic crystal structures were fabricated using
electron-beam lithography and dry etching, as described in
Ref. [15]. The samples consisted of 80 μm long silicon mem-
brane photonic crystal waveguides with a lattice period d ¼
420nm and a hole radius r ¼ 128nm ð0:305dÞ, connected
to silicon ridge access waveguides at either end. To study
the evanescent modes directly, we perform phase- and
polarization-sensitive near-field optical measurements on
the waveguide [19,20]. The near-field electric field profiles
were measured along the center of the waveguide core.

B. Spatial Fourier Transform Spectra
Before carrying out the extraction using the methods pre-
sented in Section 2, the SFT spectra of the near-field electric
field profiles were first investigated because they give useful
information about the modes. However, the resolution of the
SFT is poor, as it is limited by an inverse of the waveguide
length; see Figs. 2(c), 3(c), and 4(c). For all experimental

Fig. 2. (Color online) Dispersion for the slow-light waveguide with p2 ¼ 0:375d. (a) Bloch wavenumbers km extracted from the measured field
profiles: solid curves, ReðkmÞ; dashed curves, ImðkmÞ. Propagating (k1, k2) and evanescent TE modes (k3, k4, k5, k6) are labeled “p” and “e”, re-
spectively, and the label “TM” marks the TM-like mode. Dotted curves show the numerically calculated dispersion for propagating TE and TM
waves based on 3D plane-wave simulations. (b) The value of mismatchWmin between measured and reconstructed fields. (c) SFT of the measured
fields. (d) Sketch of the waveguide geometry.
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samples, we can see the modes appearing at kd=2π ≃�0:6
(and their Bloch harmonics at kd=2π ≃�0:4), as expected,
based on numerical simulations shown with the dotted disper-
sion curves in Figs. 2(a), 3(a), and 4(a), respectively, although
the slow-light regime is hardly distinguishable in the SFT
spectra.

Also visible in the SFT spectra is an additional mode at
kd=2π ≃ 0:345, which was observed in all three waveguides
[Figs. 2(c), 3(c), and 4(c)]. It is consistent with the fundamen-
tal TM-like mode of the waveguide [the numerical dis-
persion of which is also shown with dotted lines labeled

“TM” in Figs. 2(a), 3(a), and 4(a), respectively], which is tightly
confined to the waveguide core and thus is almost unaffected
by the p1 and p2 shifts. Its presence is most likely due to scat-
tering at the access to the silicon ridge waveguide.

C. Application of Optimal Extraction Method
Based on the SFT spectra and numerical modeling of the dis-
persion curves, we see that the structure supports two types
of propagating modes: a TE-like mode, which exhibits slow-
light propagation for certain frequencies, and a TM-like
mode with simple linear dispersion. Following the approach

Fig. 3. (Color online) Dispersion for the slow-light waveguide with p2 ¼ 0:4 d. Notations correspond to Fig. 2.

Fig. 4. (Color online) Dispersion for the slow-light waveguide with p2 ¼ 0:425d. Notations correspond to Fig. 2.
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of global optimization formulated above in Subsection 2.C, we
now represent the mode dispersion through Taylor series
expansions with coefficients that need to be determined.

The dispersion of the TE mode can feature an inflection
point, and such dependencies can be described by a third-
degree polynomial, i.e., we put j1 ¼ 3 for the first mode,
the dispersion of which is then approximated as

ω1ðkÞ ¼ Qð0Þ
1 þ Qð1Þ

1 kþ Qð2Þ
1 k2 þ Qð3Þ

1 k3: ð13Þ

As we invert this relation, we obtain the dependence k1ðωÞ.
Because this is a third-degree polynomial, for each ω there
are three solutions for k1, k2, and k3. Because the dependence
ωðkÞ is an analytic function in lossless dielectric photonic
structures, all three roots correspond to actual modes that
can be excited in the structure. In particular, in the vicinity
of an inflection point in the dispersion dependence, there will
be one real k1 corresponding to a propagating mode and a pair
of complex wavenumbers k2 ¼ k�3 corresponding to the eva-
nescent modes. The presence of evanescent modes is actually
of significant physical importance, as they can facilitate
efficient light coupling to the slow-light mode [5,21], and
the amplitude of evanescent waves can be very large at the
waveguide boundary. It is therefore critically important to in-
clude the evanescent modes in the extraction procedure.
Accordingly, we include in the analysis all three roots
k1;2;3ðωÞ of the cubic polynomial Eq. (13). As we are consider-
ing a dielectric structure, the dispersion has a symmetry

between forward and backward modes, k → −k. Accordingly,
we also need to take into account the modes with
k4;5;6ðωÞ ¼ −k1;2;3ðωÞ.

We also need to include in the analysis the TM-like modes,
which dispersion is a simple linear dependence (j7 ¼ 1):

ω7ðkÞ ¼ Qð0Þ
7 þ Qð1Þ

7 k; ð14Þ

such that k7 ¼ ðω − Qð0Þ
7 Þ=Qð1Þ

7 . There also can be a backward
propagating mode with k8ðωÞ ¼ −k7ðωÞ.

To summarize, we consider eight modes: six TE (three for-
ward and three backward, including propagating and evanes-
cent modes) and two propagating (forward and backward)
TM modes. The dispersion of all these modes is defined
through six independent coefficients: Qð0Þ

1 , Qð1Þ
1 , Qð2Þ

1 , Qð3Þ
1 ,

Qð0Þ
7 , and Qð1Þ

7 . Their values are determined through the opti-
mization procedure, as described in Subsection 2.C, where we
estimate the initial guesses for fQg based on the SFTs. As a
result, we extract the dispersion for all the dominant propa-
gating and evanescent waveguide modes.

D. Results of Dispersion Extraction
The extraction was carried out for the slow waveguide section
of ∼50 periods long where the evanescent modes were strong,
i.e., near the input interface between the fast waveguide and
slow waveguide. Because the exponentially growing evanes-
cent modes in the propagating direction (z) should be very
weak [5], they were excluded from the extraction.

Fig. 5. (Color online) Extracted intensity profiles of (a) propagating and (b) evanescent modes for p2 ¼ 0:4 d away from the slow-light regime
(λ ¼ 1537nm). The sum of the recovered modes and the measured field is shown in (c) and the difference between them is shown in (d).
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The extracted wavenumbers of the propagating and evanes-
cent waves (labeled “p” and “e,” respectively) for different
photonic structures are shown in Figs. 2(a), 3(a), and 4(a),
and the corresponding mismatch values Wmin are shown in
Figs. 2(b), 3(b), and 4(b). We see that, in all cases, the shape
of the dispersion curves matches very closely the numerically
designed types. For the structures with p2 ¼ 0:375d and p2 ¼
0:4d shown in Figs. 2 and 3 respectively, the mismatch values
for wavelengths in the slow-light region are below 15%. The in-
crease of the mismatch in the slow-light region is possibly due
to the increased sensitivity of the disorder of the slow-light
modes [22], which would break the structure of the eigen-
modes, as they would no longer satisfy the Bloch periodicity
condition, which is assumed in the extraction procedure.

For the structure with p2 ¼ 0:425d shown in Fig. 4, the dis-
persion curve has two turning points instead of an inflection
point, and the extracted wavenumbers in Fig. 4 clearly demon-
strate this feature. In the wavelength region between the turn-
ing points, the complex wavenumbers of the evanescent
modes become purely real and they all turn into propagating
modes. Despite this difference in the dispersion characteris-
tics, the modes were successfully extracted in the same way
as before, although the mismatch values in this region are lar-
ger (up to 30%). We expect that this increase in the mismatch
can be attributed to even larger sensitivity to disorder of the
slow-light modes in regions close to turning points in disper-
sion curves where ∂ω=∂k ¼ 0 and ∂2ω=∂k2 ≠ 0 compared to
slow-light near inflection points [22]. Conversely, the large

Fig. 6. (Color online) Extracted intensity profiles of waveguide modes in the slow-light regime (λ ¼ 1534nm). Notations are the same as in Fig. 5.

Fig. 7. (Color online) Results of dispersion extraction when evanescent waves are excluded from consideration; parameters and notations
correspond to Figs. 3(a) and 3(b).
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mismatch values could serve as an indication of the increased
disorder effects.

In addition to dispersion extraction, our procedure also re-
covers the spatial profiles of all the individual modes. To illus-
trate the effect of the evanescent modes, we present here the
mode profiles for the case of p2 ¼ 0:4 d (corresponding to
Fig. 3) at λ ¼ 1537nmand 1534 nm inFigs. 5 and6, respectively.
In both cases, the sum of the mode profiles is in good agree-
ment with the measured field, see plots (c) and (d) in these
figures, which confirms that the experimental profile can in-
deed be decomposed into a sum of Bloch waves. For the
wavelength of λ ¼ 1537 nm, which is detuned away from the
slow-light region, the evanescent modes decay quickly away
from thewaveguide boundary; see Fig. 5(b). On the other hand,
the evanescent modes penetrate deeper into the structure and
play an essential role in the total field distribution when the
wavelength is tuned to the slow-light region at 1534 nm; see
Fig. 6(b). These differences are consistent with the previous
theoretical predictions on the role of evanescent modes facil-
itating light coupling to the slow-light waveguides [5,13,21].

In order to further confirm the presence of evanescent
waves, we have repeated the dispersion extraction calcula-
tions by only taking into account the propagating waves.
The corresponding results presented in Fig. 7 show that the
mismatch becomes very high in the slow-light region, increas-
ing by over three times compared to analysis including eva-
nescent waves presented in Fig. 3 above. This provides
additional confirmation of the excitation of evanescent waves
and their key role in light reshaping at the interfaces of slow-
light waveguide sections.

E. Comparison with Local Extraction Results
Finally, we perform a comparison of the extraction results
based on the global optimization result presented in
Subsection 3.D above, with the results obtained through a lo-
cal optimization procedure introduced in Subsection 2.B. For
comparison, we show in Fig. 8 the results of the locally opti-
mal dispersion extraction using the same parameters as in
Fig. 3, where a globally optimal extraction procedure was
used. By comparing these figures, we see that the local opti-
mization provides only very small improvement to the mis-
match values in the slow-light region, to the detriment of
the highly irregular extracted dispersion shape. Also, the lo-
cally optimized mismatch values even turn out to be larger
than for the global optimization procedure at certain frequen-
cies, and the average mismatch appears to be smaller in the
case of global optimization. This happened because it is nu-

merically challenging to locate the minimal mismatch through
local multidimensional optimization, whereas in global optimi-
zation knowledge of the generic dispersion properties leads to
extraction results that more accurately recover the mode
characteristics.

4. CONCLUSIONS
In conclusion, we have presented the extraction of wave-
numbers and amplitude profiles of multiple propagating
and evanescent Bloch modes in periodic waveguides. Most
importantly, we were able to recover dispersion curves from
experimental near-field data by using the knowledge of the
overall shapes of the dispersion dependencies and performing
a single global extraction for all frequency points. This ap-
proach enables us to correctly extract and identify different
types of slow-light dispersion in the vicinity of inflection
points and confirm the presence of evanescent modes close
to the structure boundary.
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