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Abstract

A large-scale disaster such as earthquakes and tsunami can cause billion-dollar destruction to a

city and kill many people. To mitigate the dead troll, fast disaster response to rescue survivors

in a disaster zone is of paramount importance. However, it is difficult to find the location of

the injured people in a disaster zone due to the debris and smoke in collapsed buildings as well

as the disruption of communication networks. This can cause poor decisions of the disaster

response team about where to deploy the rescue personnel and allocate the resource. Therefore,

we propose to develop an AI system to predict the location of injured people in a disaster area.

In this research, our system has three major parts: (1) the prediction of the density of injured

people in a grid; and (2) the strategy of the rescue team to search for injured people; and (3)

the deployment the rescue team to search the location of the most density injured people area

according to the first and second part. In the first part, we developed a deep learning software

package that consists of state-of-the-art deep learning techniques such as attention module and

data annotation to predict the density of injured civilians. Our work uses a disaster simulator

called RoboCup Rescue Simulation (RCRS). To predict the density of injured people in RCRS,

we train the machine learning model using the two cases of the image data: (1) single image

frame such as a satellite image; and (2) multiple image sequence frame such as disaster video

clip. Furthermore, we evaluate our ML model in the other two domains: (1) the prediction of

the location of crime in Chicago; and (2) the prediction of the location of RSNA Pneumonia.

In the second part, we propose the Treasure Hunt Problem. In RCRS, the rescue team has

to search more than one injured people and it is a complicated multi-agent problem. Therefore,

study a simpler problem called the Treasure Hunt Problem, in which there is only one rescue crew

search the only one injured civilian. In this problem, we assume that the location of the treasure

is determined based on the probability distribution, and the ML model predicts the distribution

of probability that treasure exists for each coordinate within the map. To solve this problem,

we propose two search strategies that makes use of the ML model to improve the effectiveness

of a search mission: (1) the probabilistic greedy search that the hunter searches preferentially

for the cell with the highest probability of existing treasure given by ML model; and (2) the

probabilistically admissible heuristic A* search that the hunter searches the cell determined by

heuristic A* search with the probability of existing treasure given by ML model.

In the last part, we merge the first and second parts to search for the location of the most

density injured people area. To predict the location, we predict the number of injured people

with several ML models used in the first part and we convert the injured people density predicted

to the probability distribution. And the rescue team search the most density injured people area

according to the search strategy of the second part based on this probability distribution.
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I Introduction

This master’s thesis reports on the evaluation of the AI system to predict the location of injured

people in disaster zones with the path-finding search strategy and machine learning model.

The AI system is developed as parts of help the disaster management especially USAR with

the disaster simulator called RCRS, which will be introduced before describing the problem

statement, research objective, context, and further document structure

1.1 Urban Search and Rescue (USAR)

Disaster causes damage, ecological disruption, loss of human life, deterioration of health and

health services on a scale sufficient to warrant an extraordinary response from outside the affected

community or area. They are usually difficult to predict and it is even more challenging to

prevent them from happening. These characteristics demand disaster management strategies

to be in place for the mitigation of damaging consequences when a disaster happens. Urban

Search and Rescue (USAR) [1], which is one of the most important tasks in disaster management

strategies. The goal of USAR is to rescue the number of people as many as possible at the least

amount of time while minimizing the risk to the rescuers.

1.2 The RoboCup Rescue Simulation (RCRS)

The RoboCup Rescue Simulation (RCRS) is an official simulator used RoboCup competition,

a world-class robot competition. It is a large-scale multi-agent system that aims to study

earthquake disaster response and support the emergency decision making by the rescue crew.

In the RCRS, the simulator simulates the earthquake occurs in the city according to a specific

disaster scenario.

1.3 Problem Statement

This research aims to address the following three questions: (1) How to train the best machine

learning model for making predictions about the location of the injured people in RCRS? (2)

Given a machine learning model for predicting the location of injured people, how to find a

path to search for injured people in the least amount of time? (3) What is the optimal trade-off

between the precision of the machine learning model for locating injured people and the time

for searching for injured people?

1.4 Research Objective

The research objective should formulate a means of providing a solution to the research prob-

lem. As a starting point, this paragraph compiles a set of solution requirements. Research the

objective is subsequently formulated. The research objective should work towards satisfying

two solution requirements: (1) It should minimize the human burden as minimizing the time
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required for the rescue in the USAR task; and (2) It should evaluate the requirements of disaster

relief as a real-world solution on criteria. The following paragraphs construct a research objec-

tive by examining these solution requirements more closely. Subsequent to the considerations

above, the research objective can be formulated as follows: (1) Predict the location of injured

people in disaster zones with the machine learning model; and (2) Find the path to reach the

injured people in disaster zones at the least amount of time with the search strategy which using

the machine learning model. The first solution requirement is satisfied because the machine

learning model is used for both objectives. And the second solution requirement is satisfied with

the evaluation method of research objectives that should close to the real-world. This will be

addressed in the research method section.

1.5 Research Method

The research method will involve developing an AI system to predict the location of injured

people in a disaster area. The AI system has three major parts: (1) the prediction of the density

of injured people in a grid; and (2) the strategy of the rescue team to search for injured people;

and (3) the deployment the rescue team to search the location of the most density injured people

area according to the first and second part.

In the first part, we also developed the deep learning software package that consists of state

of the art deep learning technique such as attention module and data annotation to predict the

density of injured civilians. Our work uses the virtual disaster simulator called RoboCup Rescue

Simulation (RCRS) [2] because of hard to get the actual disaster data set such as satellite

images of a disaster zone. The RCRS is a large-scale multi-agent system that aims to study

disaster response in an earthquake. Its main purpose is to provide emergency decision support by

integration of disaster information, prediction, and planning. Furthermore, RCRS shows virtual

disaster situations as image data which represent information of disaster situation such as rescue

team, fire, building collapse debris. Since one of the deep learning models, convolutional neural

networks (CNNs) are able to extract the geometric structure of a target so that it is expected to

be an advantage of this kind of geometric information to predict. And we divide the simulation

screenshot image of the disaster situation by grid and the machine learning model predict the

number of injured people in each cell to predict the density of injured civilian in RCRS. Therefore,

we train the machine learning model using simulation screenshot images to predict the number

of injured people in each grid cell in RCRS. After predicting the number of injured people in

each cell, the AI system deploys the rescue team to search for injured people according to the

density prediction.

In the second part, we propose the Treasure Hunt Problem to study the search strategy

to search the individual injured people at the least amount of time according to the density

predict in the first part. In this problem, to search the individual injured people, we consider

the machine learning model is given to predict the location of injured people. And in the real

disaster situation, the machine learning model has to predict the location of more than one

2



civilian who needs rescue. However, this is a complicated multi-agent problem. To simplify the

problem, we assume two cases: (1) the rescue team searches the only one injured people and this

person cannot move; and (2) the machine learning model predicts the injured people exist or not

at each location as the probability distribution. To solve this problem, we propose the search

strategy to find the injured people based on the probability distribution predict from the machine

learning model: (1) The probabilistic greedy search that the hunter searches preferentially for the

cell with the highest probability of existing treasure given by machine learning model; and (2)

The probabilistically admissible heuristic A* search that the hunter searches the cell determined

by heuristic A* algorithm with the probability of existing treasure given by machine learning

model model.

In the last part, we merge the first and second parts to search for the location of the most

density injured people area. In the second part, the rescue team search injured people according

to the specific search strategy with the machine learning model. And this machine learning

model used in the search strategy is based on the multivariate Gaussian distribution. However,

in this part, we replace the machine learning model used in the search strategy to the machine

learning model studied in the first part. We convert the injured people density predicted by

the machine learning model to the probability distribution. And the rescue team searches the

most density injured people area according to the search strategy of the second part (i.e., The

probabilistic greedy search and The probabilistically admissible heuristic A* search) based on this

probability distribution.

1.6 Document Structure

This thesis is organized as follows. After presenting the related work in Section II, we present the

technical background of this study in Section III. And as the first part of our thesis, we explain

how to predict the number of injured people in Section IV. In Section V, as the second part

of our thesis, we present the Treasure Hunt Problem and explain our search strategy to solve

this problem. And In Section VI, as the last part of our thesis, we merge the first and second

parts to search for the location of the most density injured people area. Last, we summarize

and present future works of study in Section VII.
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II Related Work

The main purpose of our ongoing research is minimizing the time to rescue people in a disaster

situation. And it is also clear that search problems are related to rescue problems. Stone [3]

deriving the optimal search plan, this article discusses the relationship between locally optimal

and uniformly optimal plans. In [3], an approach to search planning is presented. This discussion

demonstrates the application of search theory to actual search planning. The six steps of search

planning listed in this work are the computation of the prior target location distribution, esti-

mation of sensor capabilities, determination of the detection function, search-plan development,

updating for search feedback, and estimation of search effectiveness.

The goal of USAR is to rescue the greatest number of people in the shortest amount of time

while minimizing the risk to the rescuers. And there are software packages that can help achieve

this goal efficiently. One of the most famous software packages, the RoboCup rescue simulator [2]

(RCRS) is a large-scale multi-agent system that aims to study disaster response in an earthquake.

Its main purpose is to provide emergency decision support by integration of disaster information,

prediction, and planning. There are many multi-agent research problems that can be investigated

using the RoboCup Rescue simulation package [2]. Furthermore, there’s a competition called

RoboCup Rescue Simulation League that uses this simulation. The goal of this competition

is to take this technological and scientific challenge and extend current rescue strategies with

planning, learning, and information exchange capabilities needed to coordinate their efforts and

to accomplish the rescue mission as a team. Over the years the winning entries in the competition

showed a strong focus on highly optimized computations for multi-agent planning and model-

based prediction of the outcome of the ongoing incidents. Several techniques for multi-agent

strategy planning and team coordination in dynamic domains have also been developed based

on the rescue simulator. Task allocation problems inherently found in this domain were first

described in [4]. The solutions developed for the distributed constraint optimization problems

(DCOPs) encountered during the simulations were evaluated in [5]. The coalition formation with

spatial and temporal constraints (CFST) model and the state-of-the-art DCOP algorithms used

for solving CFSTs were given in [6]. The problem of scheduling rescue missions was identified

and described together with a real-time executable solution based on genetic algorithms in [7].

Furthermore, there has been substantial work on building information infrastructure and decision

support systems for enabling incident commanders to efficiently coordinate rescue teams in the

field. For example, Schurr et al. introduced a system based on software developed in the rescue

competitions for the training and support of incident commanders in Los Angeles [8].

In the search problem, the case of the target does not respond to the searcher’s action and

does not move any location. In this study, the Treasure Hunt Problem matches this case of

search problem and there is much research to solve this type of problem. The objective of this

type of problem is often to maximize the probability of detection or to minimize the cost (or

time) of the search. the single searcher should find the target to minimize the time within

4



an environment of defined coordinates. And, we do not consider continuous time and space.

Cost in search problems, which is an important time in disaster relief. Therefore we consider

the situation in which the expected cost is to be minimized. Black [9] addresses this problem

when the probability of detection for each cell is constant. In his paper, the problem definition

follows this: a single target is one of several regions and cannot move, give the prior probability

that the target is in each region and there is conditional miss probability, the probability that

a target in some region will not be detected on a single search there. The cost per search in

each region, what sequence should regions be searched to minimize the expected cost of the

search? His solution is the application of Bayes rule, the policy with the minimum expected

cost is searcher always search in the region for which the posterior probability (given the failure

of earlier search) of finding object divided by the cost is maximum. Chung et al. [10] propose

a formulation of the spatial search problem, where a mobile searching agent seeks to locate a

stationary target in a given search region or declare that the target is absent. The objective is to

minimize the expected time until this search decision of the target’s presence (and location) or

absence is made. In this paper, they present a Bayesian formulation of the probabilistic search of

an area and investigate several search strategies, including some that are motivated by natural

searching-systems.

In the game theory, Princess Monster game [11] is a trace avoidance game played by two

players in the region. The monster looks for the princess. The time to search for the princess is a

reward. Both monsters and princesses are in the darkroom, and they know a room of boundaries.

The monster can catch the princess if the princess within a certain range of monsters and this

range is smaller than the size of the darkroom. This game was a well-known open problem until it

was solved by Shmuel Gal in the late 1970s [12]. His optimal strategy for the princess is to move

the princess to any place in the room, stop for a while at a time interval that is not too short or

too long, then go to another independent place and repeat the process. And his optimal strategy

for the monster subdivides the rooms into narrow squares, randomly choosing rectangles, and

then searching for them in a specific way. And after a while, they chose a different rectangle

at random randomly and independently, and so on. However, using machine learning with

the probability of this problem, no one approaches this way in Princess and Monster problem.

Especially, research on optimal parameters for using less accurate machine learning models has

not yet been conducted. Hence, we focus on finding the relationship probability-based machine

learning model’s accuracy and grid size where the hidden object is located in the Treasure Hunt

Problem.
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III Technological Background

This section describes the technological background that is relevant to this research. The goal

of this study is to predict the location of injured people using the machine learning model.

Therefore, in this section, we address the technologies related to machine learning, especially

related to deep learning.

3.1 Deep Learning

Deep learning, which is defined as a set of machine learning algorithms that attempts to achieve

high levels of abstraction through a combination of different nonlinear transducers methods

and summarize key contents or functions in large amounts of data or complex data, can be

described as a machine learning field taught from a large scale. A lot of research is being done

to express it in a form that a computer can understand when there is any data (e.g., pixel

information in the case of an image, etc.). The 2012 Deep Learning project by Andrew Ng

and Google at Stanford University succeeded in cat recognition among more than 10 million

videos uploaded to YouTube using 16,000 computer processors, more than 1 billion natural

networks and deep natural networks (DNN). In addition, Microsoft and Facebook are also making

impressive achievements by acquiring research teams or running their own development teams.

Figure 1: Illustration of Deep Learning Algorithms
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3.2 Deep Neural Network

Deep Neural Network (DNN) is an artificial neural network (ANN) consisting of several hidden

layers between the input layer (input layer) and the output layer. Deep neural networks can

model complex non-linear relationships, as can typical artificial neural networks. For example,

in an in-depth neural network structure for an object identification model, each object can be

represented by a hierarchical configuration of the basic elements of the image. At this time, the

additional layers can aggregate the features of the gradually assembled lower layers. This feature

of deep neural networks allows more complex data to be modeled with fewer units (units, nodes)

than similarly performed artificial neural networks. Examples include the application of deep

neural network structures in language modeling. In the case of the synthetic Neural Network

(CNN), not only is it well applied in the field of computer vision, but it is also well documented

for each successful application case. More recently, it has been assessed that the synthetic

neural network has been applied in the area of acoustic modeling (ASR) for automatic speech

recognition (ASR) and has been more successful than existing models. Deep neural networks

can be learned by standard error-reverse propagation algorithms. At this time, weights can be

updated using the stochastic gradient descent using the following equation.

∆wij(t+ 1) = ∆wij(t) + η
∂C

∂wij
(1)

where is η the learning rate and C is the cost function. The cost and activation function is deter-

mined by method of learning which is supervised learning, unsupervised learning, reinforcement

learning, etc. For example, when a classification problem with the supervised learning, the acti-

vation and cost functions are typically determined by the softmax function and the cross entropy

function, The softmax function is defined as pj =
exp(xj)∑
k exp(xk)

and pj is the class probability, xj
and xk is the total input of j and k. The cross entropy is defined as C = −

∑
j dj log pj . where

dj represents the target probability for the output unit j and pj is the probability output for

after apply the activation function to the j. In this study, to predict the density of the injured,

we generally approach the linear regression problem rather than the problem of multi-class clas-

sification. The activation function and the cost function are determined by the Relu (Rectified

Linear Unit) function and the root mean square error (RMSE). The Relu function is defined as

f(x) = x+ = max(0, x) (2)

Where x > 0 which is a straight line with a slope of 1 and x < 0, the output value is always

zero. And the root mean square error defined as

RMSE(θ1, θ2) =
√
MSE(θ1, θ2) =

√
E((θ1 − θ2)2 =

√∑n
i=1(x1,i − x2,i)2

n
(3)

θ1 and θ2 are the random vector to be compared with.
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3.3 Convolutional Neural Network

In deep learning, a convolutional neural network is a deep neural network class that most com-

monly applies to visual image analysis. CNNs are regularized versions of multilayer perceptrons.

Typically, multi-layer perceptrons refer to a fully connected network in which each neuron in

one layer is connected to all neurons in the next layer. A standard method of regularization

is to add some form of magnitude measurement of weights to the loss function. However, the

approach to regularization is different because CNN uses tiered patterns within data to assemble

more complex patterns using smaller, simpler patterns.

Figure 2: Illustration of Convolutional Neural Network (CNN)

Convolutional networks are given a hint by biological processes, and the connection patterns

between neurons are similar to the animal’s visual night tissue. CNNs use relatively little pre-

processing compared to other image classification algorithms. This means that filters designed

manually with conventional algorithms are learned by the network. The prior knowledge or

independence from the human effort in designing this function is a great advantage.

3.4 Recurrent Neural Network

Recurrent Neural Network (RNN) is an artificial neural network class in which connections

between nodes form a flow graph along a time sequence. By this, it can represent time-dynamic

behavior. Unlike feedforward networks, RNN can handle input sequences using internal states.

This allows applying to tasks such as linked handwriting recognition, voice recognition, etc.

The term "recurrent neural network" is used indiscriminately to refer to two similar wide-area

networks in a typical structure, one with finite impulses and the other with infinite impulses.

Both network classes represent temporal dynamic behavior. The finite impulse recurrent network

is a directed acyclic graph that can be deployed and replaced strictly feedforward neural network,

while an infinite impulse recurrent network is a directed cyclic graph that cannot be unrolled.

Both finite impulse and infinite impulse recursive networks can have additional memory states,

and memory can be directly controlled by the neural network. The storage can also be replaced
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by other networks or graphs if hat incorporates time delays or has feedback loops. This controlled

state is called the gated state or gated memory and the long short-term memory networks [13]

(LSTMs) and gated recurrent units. In this study, we use LSTM to predict the density of injured

in video-based prediction.

Figure 3: Illustration of Long Short-Term Memory (LSTM)

LSTM (Long Short-Term Memory) is a deep learning system that prevents the vanishing gra-

dient problem. Long short-term memory (LSTM) is a deep learning system that avoids the

vanishing gradient problem. LSTM augment by the recursive gate, usually called the "forget"

gate. LSTM prevents backpropagated errors from vanishing gradient problem. Instead, errors

can flow backward through unlimited numbers of virtual layers unfolded in space. In other

words, LSTM can learn about tasks that require memory for events that occur before thousands

or even millions of discrete time steps earlier. Problem specific LSTM similar status can be

evolved. LSTM works with long delays between critical events and can handle mixed signals

from low-frequency and high-frequency. Unlike previous models based on concepts such as the

Hidden Markov Model (HMM), LSTM can learn to recognize language that fits the situation.
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IV Locating Injured People After an Earthquake

Disasters such as earthquakes and tsunami can cause significant destruction to a city and hurt

many people. To reduce the amount of the dead troll, fast disaster response to rescue survivors

in a disaster zone is of paramount importance. However, the problem is all the current method

to manage disaster environment is all done by human and their work burden is too much to save

the people as much as possible. Especially, search for the location of people who need rescue in

the disaster zone spend a considerable amount of time, which is one of the most important issues

in disaster relief. The one of the solution to solve this problem, if we can predict the location

of injured people in a disaster situation, it can help the rescue team to deploy the rescue team

more quickly and accurately so that the time to save people can significantly reduce. Therefore,

in this study, we developed a software package for predicting the location of injured people in an

earthquake situation based on deep learning. However, there are limitations of conducting an

experiment in a real disaster situation and collecting real disaster data set to train the machine

learning model. Therefore, we predict the hidden injured in the virtual disaster simulator called

RoboCup Rescue Simulation (RCRS) with deep learning.

4.1 The RoboCup Rescue Simulation (RCRS)

The objective of our study is to develop software packages to predict the location of the injured

people using deep learning based on disaster simulation. To utilize deep learning techniques

mainly, as many data sets as possible are needed to train the machine learning model. However,

the data sets based on the actual situation of large-scale disasters are very difficult to obtain.

It can make the problem of the machine learning model predict the injured people in a disaster

zone. One way to solve this problem is to use virtual disaster simulation to train the machine

learning model. Virtual disaster simulations allow generating enough data sets for training deep

learning model on the assumption that computer resources are enough. Therefore, we survey

the virtual disaster simulation suitable for studying the actual disaster response. The virtual

disaster simulation should not only need to realistically simulate the disaster scenario but also

can benchmark the resulting disaster response plan.

Figure 4: Illustration of RoboCup Rescue Simulation (RCRS)
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The RoboCup Rescue Simulation (RCRS) is an official simulator used RoboCup competition,

a world-class robot competition. It is a large-scale multi-agent system that aims to study

earthquake disaster response and support the emergency decision making by the rescue crew.

In the RCRS, the simulator simulates the earthquake occurs in the city according to a specific

disaster scenario. The city where the earthquake will occur can be selected from the Open Street

Map (OSM) because the RCRS has a program that converts maps on the OSM into maps to

be used for simulation. And the earthquake disaster scenario in the simulator consists of time

steps, buildings, roads, and people. In a disaster scenario, a fire starts at certain buildings,

and some randomly selected buildings collapse and create debris. A fire cause injury and the

debris cause the interference of the movement of the rescue team. And scenario progresses a

unit of time called time step and the time step progresses, the fire spreads and people move.

In the simulation, there are two groups of people: rescue teams and civilians. The rescue

team consists of firefighters, police and emergency teams. The firefighters are responsible for

firefighting, police removing debris from buildings, and emergency teams for transporting the

injured civilians to shelters. Each rescue crew can communicate within a certain range, and

according to the competition participants’ disaster response plans and policies, rescue crews are

moved.

4.2 Hidden Injured Problem

In RCRS, there are civilians in the disaster zone random location. And as the disaster progresses,

the building collapses or fires cause injured civilians. Therefore, we predict the location of

hidden injured civilians in RCRS. And the civilians have information called Health Point (HP)

that shows how much they are injured status. Due to the disaster situation in simulators, likes

fires spread or buildings collapse, civilians’ HP going to lower. We set the HP threshold which

determines the civilians are injured or not. If one civilian’ HP lower than this threshold, we

determine this civilian is injured. In this study, we propose the "Hidden Injured Problem"

problem whose goal is to find the location of injured people. In this problem, we suppose the x

and y are the coordinate of the map where the 1 ≤ x ≤ X and 1 ≤ y ≤ Y . And the location of

civilians is chosen randomly, the location of the rescue team and initial fire start building in the

simulation is fixed. In addition, each time step t exists in the simulation, as time step increase,

fires spread or building collapses become more severe, thus increasing the number of injured

civilians. Accordingly, the rescue team moves and tracks the location of the injured people.

Therefore, even if the initial location of civilians is random, the location of the occurrence of the

injured civilian will have a constant pattern as the disaster scenario progresses.
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Figure 5: Predict the density of injured people in RCRS

In this study, we use the machine learning model M to predict the location of the injured. And

predict the exact location of injured civilians requires considerable computational resources and

complexity, so that we divide the simulation map into grid and predict the density of the injured

people in each grid cell. This can significantly shorten computational resources, complexity and

the time required for training. Furthermore, we expected that the accuracy of the prediction of

the injured civilians location will also be increased. Therefore, we assume that the map divided

by the grid size of M ×N , and the number of injured civilians in each grid cell Ni,j where the

i = 1, 2, . . . ,M and j = 1, 2, . . . , N . And Ni,j is the number of injured civilians who locate at

(xt, yt) within the range of X∗(i−1)
M ≤ xt <

X∗i
M and Y ∗(j−1)

N ≤ yt <
Y ∗j
N . And we predict the

number of injured civilians in each grid cell when the given data D by time step with machine

learning model Ni,j = M(D, t).

4.3 The Machine Learning Model

Machine learning techniques, and deep learning, in particular, have attracted much attention in

recent years due to successful application to various actual problems that had been regarded as

difficult for several decades due to the complexity of the problem. In [14], it was shown that deep

learning surpassed traditional machine learning methods using handmade feature extraction in a

famous ‘natural’ image classification task [15]. It has been suggested that deep neural networks

can automatically learn the important features of a problem, such as the geometrical constraints

of pixels in images. For example, a deep neural network that was trained on images of humans

developed neurons that responded to the human face or body. In this study, we develop the

machine learning model to the density of the injured civilians. The objective of the study is

finding the best machine learning model to predict the density of the injured civilians in the

disaster zone. In this study, we divide this goal into two main categories: (1) predicting the

location of the injured civilians in the RCRS using image-based data such as satellite images in

the disaster zone or simulation map images. (2) predicting the location of the injured civilians

in the RCRS using video-based data such as CCTV video in the disaster zone or simulation

map image sequence. And we expected that using Convolution Neural Network (CNN) with

Recurrent Neural Network (RNN) is a suitable neural network to predict.
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4.4 Image-Based Prediction

To predict the density of injured civilians in RCRS using image-based data, we train the machine

learning model using simulation screenshot images. We consider that all frames of video clips in

disaster situations are independent images. Therefore, we choose one frame randomly in images

sequence of a disaster scenario in RCRS to train the machine learning model. The model’s inputs

are simulated images created from RCRS. And CNN extracts images features, fully-connected

layer output the number of injured people vectors in each grid cell.

Figure 6: Illustration of CNN based machine learning model

In this study, we research the method of enhancing the performance of the machine learning

model to predict the number of injured civilians in RCRS. And we evaluate the prediction

performance of the different machine learning models to find the best performance of the machine

learning model. To enhance the performance of the machine learning model, first, we find the

best CNN model to extract the images feature. Second, we expect to see better performance

by applying the attention mechanism to the best CNN model found in the first step. Finally,

we apply our own data annotation method to simulation data set for training machine learning

model.

4.5 Video-Based Prediction

Predicting the density of injured people in RCRS using video-based data, we train the machine

learning model using a simulation screenshot image sequence. We consider that all frames of

video clips are used for training. Therefore, we choose nine frames randomly in images sequence

of a disaster scenario in RCRS to train the machine learning model and predict the density of

the 10th frame which is the next frame of 9th of the nine frames. The machine learning model’s

inputs are simulated images created and filtered from Plug-in1 and extract images feature using
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CNN. Afterward, the Long-short memory (LSTM) extract sequence image feature from CNN.

And fully-connected layer output the number of injured people vectors in each grid cell. The

different from image-based predictions is add the LSTM layer to sequence learning on video.

Figure 7: Illustration of CNN-LSTM based machine learning model

In this study, we research the method of enhancing the performance of the machine learning

model to predict the number of injured civilians in RCRS. And we evaluate the prediction

performance of the different machine learning models to find the best performance of the machine

learning model. To enhance the performance of the machine learning model, first, we find

the best CNN-LSTM model to extract the images feature. Second, we expect to see better

performance by applying the attention mechanism to the best CNN-LSTM model found in the

first step. Finally, we apply our own data annotation method to simulation data set for training

machine learning model.

4.6 Find the Best CNN model

To enhance the performance of prediction, we need to find the best CNN model to extract the

images feature. Therefore we evaluated performance using several CNN models that performed

very well in recent image processing studies. In recent image processing related to deep learning

researches has mainly investigated three important factors of networks to enhance the perfor-

mance of CNN models: depth, width, and cardinality. ResNet [16] stacks the same topology

of residual blocks along with skip connection to build an extremely deep architecture. Wide-

ResNet [17] shows that width is another important factor to improve the performance of a

model. Zagoruyko and Komodakis [17] propose to increase the width of a network based on

the ResNet architecture. They have shown that a 28-layer ResNet with increased width can
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outperform an extremely deep ResNet with 1001 layers on the CIFAR benchmarks. ResNet [18]

and Xception [19] come up with to increase the cardinality of a network. They empirically

show that cardinality not only saves the total number of parameters but also results in stronger

representation power than the other two factors: depth and width. In this study, we evaluate

our machine learning model with several CNN which is the state-of-art in image processing.

4.7 The Attention Mechanism

Apart from the CNN model of depth, width, and cardinality factors, we investigate a different

aspect of the CNN architecture design, attention. The significance of attention has been studied

extensively in the previous literature [20–25]. Our goal is to increase the focus image feature

power of CNN by using attention mechanism: focusing on important features and suppressing

unnecessary ones. Hu et al. [26] propose the Squeeze and excitation (SE) module which use

global average-pooled features to compute channel-wise attention. Woo et al. [27] propose Con-

volutional Block Attention Module (CBAM), which use max-pooled features as well that is a

simple yet effective attention module for feed-forward convolutional neural networks. Further-

more, we proposed the new attention module called Grid Convolutional Block Attention Module

(GCBAM). This attention module divides the two-dimension image feature vector to a certain

grid size. And use max-pooled features as well that is a simple yet effective attention module

for feed-forward convolutional neural networks. In this study, we use SE, CBAM and GCBAM

attention module to the model chosen by the previous experiment which performs well.

Figure 8: Illustration of SE and CBAM attention module
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4.8 Feature-Highlight Data Annotation

In deep learning with image processing, the deep learning model train images according to the

feature of images. And the accuracy of the deep learning model is affected by whether the model

trains the feature of images well. In this study, we propose the data annotation method to help

the model training more about the feature of images within the images for predicting the results

well. In RCRS, injured civilians are occurred by fire or collapse of a building. And the rescue

teams patrol to find injured civilians. Therefore, we expect that the important image of features

to predict the location of injured civilians is the location of the object which relates to the

injured civilians such as the location of collapsed buildings, locations of fires and rescue teams.

Therefore, we study the data annotation method that highlighting the important location which

is related to the result in the image. We expect that this annotation method allows the machine

learning model to focus more on the feature of images in the training process. Therefore, we

resizing, cropping, and highlighting of simulation image data which contribute to the increase

in the efficiency of training and prediction accuracy of the deep learning model.

Figure 9: Feature-Highlight data annotation

4.9 Chicago Crime Location Prediction

In this study, we tested our machine learning model in another domain called Chicago Crime

Dataset 1. This dataset reflects reported incidents of crime that occurred in the City of Chicago

from 2001 to the present. And this dataset includes latitude and longitude location information

for crimes committed. In order to protect the privacy of crime victims, addresses are shown at

the block level only and specific locations are not identified. However, since the approximate

location is displayed, it is sufficient to use. In this study, we predict the crime location in Chicago

with our machine learning model. To train the machine learning model, we create the image

dataset which is converted Chicago crime location datasets in query form into satellite images.

And we use the Chicago crime location dataset of longitude and latitude with google static map
1https://www.kaggle.com/chicago/chicago-crime
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API 2 to convert the image. The picture below is an example of a data set that we created. In

that picture, a blue mark indicates where the crime occurred and each image is taken using a

satellite to capture an area within 320m x 320m of the city of Chicago.

Figure 10: Image of Chicago Crime dataset using Google static map API service

To train the machine learning model much better, we highlight the satellite image. We’ve

highlighted data that is highly relevant to where the crime occurred. For example, each region

highlighted the map in transparent color according to the average income of the area. We divided

the map into 8x8 grid sizes (i.e., each cell size is 60m x 60m) and calculated the average income

for each cell. Then we highlight the transparent color to each cell depends on the average income.

And the income data is based on the Kaggle USA household income dataset 3. Furthermore,

we highlighted the important building location such as a government agency which is a police

station, a fire station, a bus stop, etc. and a location for the occurrence of other crimes, such as

speed and red light violation location in the map.
2https://developers.google.com/maps/documentation/maps-static/intro
3https://www.kaggle.com/goldenoakresearch/us-household-income-stats-geo-locations
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Figure 11: Example of highlighting Chicago crime location satellite images

In this study, we also divide a Chicago Crime of Google map image dataset which we created

into the grid size M x N. And we predict how much areas of each grid cell contain a crime

location bounding box. In this problem, we assumed that the box which width and height to

40m and center coordinate is the crime occurrence coordinate is a crime location bounding box.

And we suppose the several values: (1) X and Y axes of the Chicago Crime of Google map

image coordinates are (x, y), (2) the coordinates of the crime location bounding box are (xp, yp).

(3) the coordinates of each grid cell is (xt, yt) that within the range of X∗(i−1)
M ≤ xt <

X∗i
M and

Y ∗(j−1)
N ≤ yt <

Y ∗j
N . (4) The value of how much areas of each grid cell contain crime location

bounding box is Ni,j where the i = 1, 2, . . . ,M and j = 1, 2, . . . , N . Therefore, we label Ni,j to

the area of (xt, yt) divided by the overlaps area of the crime location bounding box (xp, yp) and

use our machine learning model with given image data to predict Ni,j .

4.10 RSNA Pneumonia Detection Challenge

In this study, we tested our machine learning model in another domain called RSNA Pneumonia

Detection Challenge 4. In this competition, the participant challenged to build an algorithm to

detect a visual signal for pneumonia in medical images. Specifically, your algorithm needs to

automatically locate lung opacities on chest radiographs. Pneumonia accounts for over 15% of

all deaths of children under 5 years old internationally. In 2015, 920,000 children under the age

of 5 died from the disease. In the United States, pneumonia accounts for over 500,000 visits to
4https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/overview
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emergency departments [28] and over 50,000 deaths in 2015 [29], keeping the ailment on the list

of top 10 causes of death in the country. While common, accurately diagnosing pneumonia is

a tall order. It requires the review of a chest radiograph (CXR) by highly trained specialists

and confirmation through clinical history, vital signs, and laboratory exams. Pneumonia usually

manifests as an area or areas of increased opacity [30] on CXR. However, the diagnosis of

pneumonia on CXR is complicated because of a number of other conditions in the lungs such as

fluid overload (pulmonary edema), bleeding, volume loss (atelectasis or collapse), lung cancer,

or post-radiation or surgical changes. Outside of the lungs, fluid in the pleural space (pleural

effusion) also appears as an increased opacity on CXR. When available, a comparison of CXRs

of the patient taken at different time points and correlation with clinical symptoms and history

is helpful in making the diagnosis. CXRs are the most commonly performed diagnostic imaging

study. A number of factors such as positioning of the patient and depth of inspiration can alter

the appearance of the CXR [31], complicating interpretation further. In addition, clinicians

are faced with reading high volumes of images every shift. To improve the efficiency and reach

of diagnostic services, the Radiological Society of North America (RSNA R©) has reached out

to Kaggle’s machine learning community and collaborated with the US National Institutes of

Health, The Society of Thoracic Radiology, and MD.ai to develop a rich dataset for this challenge.

Figure 12: Sample Image of RSNA Pneumonia Detection challenge dataset

The dataset used in this challenge contains bounding box information for the patient pneumonia

location. In this study, we divide a visual signal for pneumonia in the medical image which the

dataset of this challenge into the grid size M x N. And we predict how much areas of each grid

cell contain patient pneumonia’s bounding box. In this problem, we suppose the several values:

(1) X and Y axes of the medical image coordinates are (x, y), (2) the coordinates of the patient

19



pneumonia’s bounding box are (xp, yp). (3) the coordinates of each grid cell is (xt, yt) that within

the range of X∗(i−1)
M ≤ xt <

X∗i
M and Y ∗(j−1)

N ≤ yt <
Y ∗j
N . (4) The value of how much areas of

each grid cell contain patient pneumonia’s bounding box is Ni,j where the i = 1, 2, . . . ,M and

j = 1, 2, . . . , N . Therefore, we label Ni,j to the area of (xt, yt) divided by the overlaps area of

the patient’s pneumonia bounding box (xp, yp) and use our machine learning model with given

image data to predict Ni,j .

4.11 Experiment Results

In this section, we predict the density of injured people in RCRS and train the machine learning

model using screenshot images of the simulation. We consider two cases of the image data

to train the machine learning model: (1) single image frame such as a satellite image; and

(2) multiple image sequence frame such as disaster video clip. Each case, we test the machine

learning model to improve performance as follows: (1) comparison of the several state-of-art CNN

models to find the best performance of the CNN model; and (2) comparison of the performance

of the attention module model with the non-attention module model; and (3) comparison of

the performance of the Feature-Highlight Data annotation with the non-Feature-Highlight Data

annotation model. Furthermore, we evaluate our machine running model in the other two

domains: (1) the prediction of the location of crime in Chicago; and (2) the prediction of the

location of RSNA Pneumonia.

4.11.1 Image-Based Prediction: Find the Best CNN model

In this experiment, we predict the density of injured people in each grid cell within a single frame

of simulation screenshot image. And we evaluate the several state-of-art CNN models to find the

best performance of the CNN model. We use the disaster scenario that used at the RoboCup

competition last year. This scenario is the earthquake that happens in Kobe, Japan that 163

civilians and 80 rescue crews exist within the 4km x 3km range. In this scenario, The rescue

crews locate in a certain chosen building and civilians located in a randomly chosen building.

And the fire starts randomly chosen six buildings. The scenario consists of 200 frames of the

time step and we randomly choose one frame to train the machine learning model. We create a

total of 11,000 disaster scenarios and we choose 10,000 scenarios to train the machine learning

model, 1,000 scenarios to test the machine learning model. Both scenarios to train and test were

not have overlapping scenarios.

For each scenario, we divide the simulation map into a grid size 4x4 and 8x8. And we

compared the actual density of injured civilians in each grid cell (i.e., the ground truth) with

the one predicted by the machine learning model and calculated the root mean squared error

(RMSE) between the ground truth and the predicted numbers. We train the ResNet [16],

Xception [19], Inception-ResNetV2 [32], InceptionV3 [33] and DenseNet [34] CNN based machine

learning model to find the best performance of CNN model using Nvidia’s GeForce RTX 2080
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Ti graphics card. Each machine learning model trained the six epoch with the learning rate to

0.001 and the size of the input image is a 256x192 pixel.

According to the experiment, the machine learning model with Xception of RMSE is 2.1103

in the 4x4 grid which is the best performance. And the machine learning model with Inception-

ResNetV2 of RMSE is 1.0508 in the 8x8 grid which is the best performance. Those models nearly

double the performance of the worst-performing model. Except for the machine learning model

with Inception-ResNetV2, performance did not improve as the number of parameters increased.

MobileNet, on the other hand, showed better performance compared to fewer parameters. To

enhance the model performance, we attach the attention module to the machine learning model

in the next experiment. And for the efficient progress of the experiment, we choose three models

to attach the attention module which perform well in both 4x4 and 8x8 grid based on the result of

the experiment. In this study, we choose the machine learning model with Inception-ResNetV2

and Xception.

4.11.2 Image-Based Prediction: Attention mechanism

In this experiment, we compare the performance of the attention module model with the non-

attention module model to see whether the attention module improves the performance of the

machine learning model. And we use the same scenario used in the previous experiment. We

evaluate Squeeze and excitation (SE), Convolutional Block Attention Module (CBAM) and Grid

Convolutional Block Attention Module (GCBAM) attention module with ResNet-50, Inception-

ResNetV2 and Xception CNN based model. And GCBAM is a new attention module proposed

in this study. For each scenario, we compared the actual density of injured civilians in each grid

cell (i.e., the ground truth) with the one predicted by the machine learning model and calculated

the root mean squared error (RMSE) between the ground truth and the predicted numbers.

According to the experiment, there is an improvement in performance for Inception-ResNetV2

with CBAM and GCBAM attention models. However, there is no or little improvement Xception

and the model without the attention model still the best performance. We guess that due to the

characteristics of the attention module that is focused more on the feature of the image seems

to do not fit into model well. Therefore, we expect to improve the performance of the model by

utilizing the Feature-Highlight data annotation method which is proposed in this study.

4.11.3 Image-Based Prediction: Feature-Highlight Data Annotation

In this experiment, we compare the performance of the Feature-Highlight data annotation with

the non-version model. And we use the same scenario used in the previous experiment. We

evaluate InceptionResNetV2 and Xception with SE, CBAM, and GCBAM attention module

and Feature-Highlight data annotation. Furthermore, for each scenario compared the actual

density of injured civilians in each grid cell (i.e., the ground truth) with the one predicted by

the machine learning model and calculated the root mean squared error (RMSE) between the
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ground truth and the predicted numbers.

Figure 13: RMSE according to the ML model with Feature-Highlight data annotation and grid

size

According to the experiment, the InceptionResNetV2 with CBAM attention module and Feature-

Highlight data annotation method shown the best performance in the 4x4 grid which RMSE

is 2.0130. And the InceptionResNetV2 with GCBAM attention module and Feature-Highlight

data annotation method shown the best performance in the 8x8 grid which RMSE is 1.0509.

Furthermore, nearly half of the machine learning model with Feature-Highlight data annota-
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tion shown better performance than the original model. It means our Feature-Highlight data

annotation method performed well in the RCRS.

4.11.4 Chicago Crime Location Prediction

To predict the crime location in Chicago, we create the image dataset based on the Kaggle’s

Chicago Crime dataset. A total of 4,300 images were created for model training, 700 images were

created for model testing and we divide images into 4x4 and 8x8 grid. We use Nvidia’s GeForce

RTX 2080 Ti graphics card to train the machine learning model. In the optimizer part, we use

Adam optimizer with a mean squared error loss function and the learning rate to 0.0001 with six

epochs. As the first step of our study, we evaluate the machine learning model with the ResNet,

DenseNet, Inception-ResNetV2, InceptionV3, and Xception CNN based models. And we also

evaluate the Xception and Inception-ResNetV2 with SE, CBAM, GCBAM attention module

models. In this experiment, we find the best performance of the machine learning model. For

each step, we compared the actual the area of each grid cell divided by the overlaps area of

the crime location bounding box (i.e., the ground truth) with the one predicted by the machine

learning model and calculated the root mean squared error (RMSE) between the ground truth

and the predicted numbers.
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Figure 14: RMSE according to the ML model and grid size in Chicago Crime Dataset

In this experiment, almost more than half of the CNN based machine learning model improves

the performance after attaching the attention module. In the grid size 4x4, Inception-ResNetV2

with the CBAM attention module is the best performance in which RMSE is 0.1498. In the grid

size 8x8, Inception-ResNetV2 with our GCBAM attention module is the best performance in

which RMSE is 0.1584. According to the experiment, the Inception-ResNetV2 with the CBAM

attention module and the Inception-ResNetV2 with GCBAM attention module is not only the

best performance of the machine learning model in Chicago Crime domain but also in the RCRS.

4.11.5 RSNA Pneumonia Detection Challenge

To predict the patient pneumonia location, we create the image dataset based on the Kaggle’s

pneumonia challenge dataset. A total of 6,000 images were created for model training, 600

images were created for model testing. We divide the pneumonia medical images into 16 and 64.

It means the map divided into 4x4 and 8x8 grid size. We use Nvidia’s GeForce RTX 2080 Ti

graphics card to train the machine learning model. In the optimizer part, we use Adam optimizer

with a mean squared error loss function and learning rate to 0.0001 with six epochs. As the

first step of our study, we evaluate the ResNet, DenseNet, InceptionResNetV2, InceptionV3 and

Xception CNN based machine learning model to find the best CNN model to predict. And

we also evaluate the Xception and Inception-ResNetV2 with SE, CBAM, GCBAM attention

module models. For each step, we compared the actual the area of each grid cell divided by
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the overlaps area of the patient’s pneumonia bounding box (i.e., the ground truth) with the one

predicted by the machine learning model and calculated the root mean squared error (RMSE)

between the ground truth and the predicted numbers.

Figure 15: RMSE according to the ML model and grid size in RSNA Dataset

In this experiment, the ResNet-101 CNN based model is the best performance of the machine

learning model in the 4x4 grid which RMSE is 0.1253. And the Xception with GCBAM attention

module CNN based model is the best performance of the machine learning model in the 8x8 grid

in which RMSE is 0.1504. According to the experiment, in the 8x8 grid size, the Xception with

GCBAM attention module CNN based model is the best performance not only in the RSNA

dataset but also RCRS. And in the 4x4 grid size, when we attach the attention module the

performance is little increase or even decrease.
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4.11.6 Video-Based Prediction: Find the best CNN model

In this experiment, we predict the density of injured people in each grid cell within the sequence

of the screenshot image. And we evaluate the several state-of-art CNN models with LSTM

layers to find the best performance of the CNN model. We use the disaster scenario that used

at the RoboCup competition last year. This scenario is the earthquake that happens in Kobe,

Japan that 163 civilians and 80 rescue crews exist within the 4km x 3km range. In this scenario,

The rescue crews locate in a certain chosen building and civilians located in a randomly chosen

building. And the fire starts randomly chosen six buildings. The scenario consists of 200 frames

of the time step and we choose ten frames to train the machine learning model. The machine

learning model predicts the density of injured civilians in the next frame of the images to train.

And to train the machine learning model, we randomly choose one frame of image in each

scenario and create the image sequence which includes the chosen frame with after eight frames.

We create a total of 11,000 disaster scenarios and we choose 10,000 scenarios to train the machine

learning model, 1000 scenarios to test the machine learning model. Both scenarios to train and

test were not have overlapping scenarios. And each scenario contains 200 images, a total of

2,000,000 images to train.

For each scenario, we divide the simulation map into a grid size 4x4 and 8x8. And we

compared the actual density of injured civilians in each grid cell (i.e., the ground truth) with the

one predicted by the machine learning model and calculated the root mean squared error (RMSE)

between the ground truth and the predicted numbers. We train the ResNet [16], ResNeXt [18],

Xception [19], Inception-ResNetV2 [32], InceptionV3 [33] and DenseNet [34] CNN with LSTM

layers based machine learning model to find the best performance of CNN model using Nvidia’s

GeForce RTX 2080 Ti graphics card. Each machine learning model trained the six epoch with

the learning rate to 0.001 and the size of the input image is a 256x192 pixel.

According to the experiment, the ResNeXt-50 CNN based machine learning model is the

best performance in the 4x4 grid which RMSE is 3.2219. And also the ResNeXt-50 CNN based

machine learning model is the best performance in the 8x8 grid which RMSE is 1.4829. To

enhance the model performance, we attach the attention module to the machine learning model

in the next experiment. And for the efficient progress of the experiment, we choose three models

to attach the attention module which perform well in both 4x4 and 8x8 grid based on the result

of the experiment. In this study, we choose the machine learning model with ResNeXt-50 and

ResNeXt-101.

4.11.7 Video-Based Prediction: Attention mechanism

In this experiment, we compare the performance of the attention module model with the non-

attention module model to see whether the attention module improves the performance of

the machine learning model. And we use the same scenario used in the previous experiment.

We evaluate Squeeze and excitation (SE), Convolutional Block Attention Module (CBAM) and
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Grid Convolutional Block Attention Module (GCBAM) attention module with ResNeXt-50 and

ResNeXt-101 CNN with LSTM layers based model. For each scenario, we compared the actual

density of injured civilians in each grid cell (i.e., the ground truth) with the one predicted by

the machine learning model and calculated the root mean squared error (RMSE) between the

ground truth and the predicted numbers.

According to the experiment, there is an improvement in performance for ResNeXt-50 and

ResNeXt-101 CNN with the LSTM layers based model in the 4x4 and 8x8 grid. However, in

the 4x4 grid size, the ResNeXt-101 has improvement with CBAM and in the 8x8 grid size, the

ResNeXt-50 has improvement with GCBAM. And the ResNeXt-50 still the best performance in

the 4x4 grid, the ResNeXt-50 with GCBAM is the best performance in the 8x8 grid which RMSE

is 1.4896. We guess that due to the characteristics of the attention module that is focused more

on the feature of the image seems to do not fit into model well. Therefore, we expect to improve

the performance of the model by utilizing the Feature-Highlight data annotation method which

is proposed in this study.

4.11.8 Video-Based Prediction: Feature-Highlight Data Annotation

In this experiment, we compare the performance of the Feature-Highlight Data annotation with

the non-Feature-Highlight Data annotation model. And we use the same scenario used in the

previous experiment. We evaluate SE, CBAM and GCBAM attention module with ResNeXt-50

and ResNeXt-101 CNN with LSTM layers based model. And compare each model to apply

Feature-Highlight data annotation method with non-version. Also, for each scenario compared

the actual density of injured civilians in each grid cell (i.e., the ground truth) with the one

predicted by the machine learning model and calculated the root mean squared error (RMSE)

between the ground truth and the predicted numbers. In the graph below, FH means the

Feature-Highlight annotation method.
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Figure 16: RMSE according to the ML model and grid size

According to the experiment, the ResNeXt-101 with Feature-Highlight data annotation method

shown the best performance in the 4x4 grid which RMSE is 3.1821. And the ResNeXt with SE

attention module and Feature-Highlight data annotation method shown the best performance

in the 8x8 grid which RMSE is 1.4876. Furthermore, more than half of the machine learning
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model with FH data annotation shown better performance than the original model. It means

our FH data annotation method performed well in the RCRS.

4.12 Conclusions

In this part, we predict the hidden injured in the virtual disaster simulator called RoboCup

Rescue Simulation (RCRS) with deep learning. First, we evaluate the several state-of-art CNN

models to find the best performance of the CNN model. We train the ResNet [16], ResNeXt [18],

Xception [19], Inception-ResNetV2 [32], InceptionV3 [33] and DenseNet [34] CNN based machine

learning model to find the best performance of CNN model. According to the experiment, the

machine learning model with Xception of RMSE is 2.1103 in the 4x4 grid which is the best

performance. And the machine learning model with Inception-ResNetV2 of RMSE is 1.051 in

the 8x8 grid which is the best performance. To enhance the model performance, we attach the

attention module to the machine learning model in the next experiment. And for the efficient

progress of the experiment, we choose three models to attach the attention module which perform

well in both 4x4 and 8x8 grid based on the result of the experiment.

Second, we compare the performance of the attention module model with the non-attention

module model to see whether the attention module improves the performance of the machine

learning model. And we use the same scenario used in the previous experiment. We evaluate

Squeeze and excitation (SE), Convolutional Block Attention Module (CBAM) and Grid Con-

volutional Block Attention Module (GCBAM) attention module with InceptionResNetV2 and

Xception CNN based model. According to the experiment, in the 4x4 grid size, there is an

improvement in Inception-ResNetV2. However, there is no improvement in Xception. In the

8x8 grid size, there is little improvement in Inception-ResNetV2 and still no improvement in

Xception. Furthermore, the Xception still is the best performance in the 4x4 grid which RMSE

is 2.1103. And the Inception-ResNetV2 with GCBAM attention module is the best performance

in the 8x8 grid which RMSE is 1.0509. In this study, we consider why the attention module

cannot increase the performance of the machine learning model, we guess that due to the char-

acteristics of the attention module that is focused more on the feature of the image seem to do

not fit into the model well. Therefore, we expect to improve the performance of the model by

utilizing the Feature-Highlight data annotation method which is proposed in this study.
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Figure 17: RMSE of ML model compare to FH and NON-FH

Third, we compare the performance of the Feature-Highlight data annotation and non-

version. According to the experiment, there is improvement when we use Feature-Highlight

data annotation with the attention module in the 4x4 grid except for the GCBAM attention

module. However, in the 8x8 grid size, there is no improvement except for the Xception with the
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SE attention module. Furthermore, the Inception-ResNetV2 with CBAM attention module and

Feature-Highlight data annotation method shown the best performance in the 4x4 grid which

RMSE is 2.013. And the Inception-ResNetV2 with GCBAM attention module and Feature-

Highlight data annotation method shown the best performance in the 8x8 grid which RMSE is

1.051. And more than half of the machine learning model with FH data annotation shown better

performance than the original model. It means our FH data annotation method performed well

in the RCRS.

Last, we compare the other two domains called Chicago Crime Location Prediction and

RSNA Pneumonia Detection Challenge. According to the experiment, in the Chicago Crime

domain, in the grid size 4x4, Inception-ResNetV2 with the CBAM attention module is the

best performance in which RMSE is 0.1498. In the grid size 8x8, Inception-ResNetV2 with

our GCBAM attention module is the best performance in which RMSE is 0.1584. And the

Inception-ResNetV2 with the CBAM attention module and the Inception-ResNetV2 with the

GCBAM attention module is not only the best performance of the machine learning model in the

Chicago Crime domain but also in the RCRS. However, in the RSNA domain, the ResNet-101

CNN based model is the best performance of the machine learning model in the 4x4 grid which

RMSE is 0.1253. And the Xception with GCBAM attention module CNN based model is the

best performance of the machine learning model in the 8x8 grid which RMSE is 0.1504. Because

of the RSNA domain of characteristic, RSNA Pneumonia is not a perfectly hidden object and

our machine learning model used the find the hidden object of goals. Therefore, the RSNA

Pneumonia domain is more focus on detection so that the result is different.

Figure 18: The best performance of ML model in each domains

In the video part, we predict the density of injured people in each grid cell within the

sequence of the screenshot image. First, we evaluate the several state-of-art CNN models with

LSTM layers to find the best performance of the CNN model. We train the ResNet [16],

ResNeXt [18], Xception [19], Inception-ResNetV2 [32], InceptionV3 [33] and DenseNet [34] CNN

with LSTM layers based machine learning model to find the best performance of CNN model.

According to the experiment, the ResNeXt-50 CNN based machine learning model is the best
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performance in the 4x4 grid which RMSE is 3.2219. And also the ResNeXt-50 CNN based

machine learning model is the best performance in the 8x8 grid which RMSE is 1.4829. To

enhance the model performance, we attach the attention module to the machine learning model

in the next experiment. And for the efficient progress of the experiment, we choose three models

to attach the attention module which perform well in both 4x4 and 8x8 grid based on the result

of the experiment. In this study, we choose the machine learning model with ResNeXt-50 and

ResNeXt-101.

Second, we compare the performance of the attention module model with the non-version

model to see whether the attention module improves the performance of the machine learning

model. And we use the same scenario used in the previous experiment. We evaluate SE, CBAM

and GCBAM attention module. According to the experiment, in the 4x4 grid size, the ResNeXt-

101 has improvement with CBAM and in the 8x8 grid size, the ResNeXt-50 has improvement

with GCBAM. And the ResNeXt-50 still the best performance in the 4x4 grid, the ResNeXt-50

with GCBAM is the best performance in the 8x8 grid which RMSE is 1.4896. We guess that

due to the characteristics of the attention module that is focused more on the feature of the

image seems to do not fit into model well. Therefore, we expect to improve the performance of

the model by utilizing the Feature-Highlight data annotation method which is proposed in this

study.
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Figure 19: RMSE of ML model compare to FH and NON-FH

Last, We compare the performance of the Feature-Highlight data annotation with the non-

Feature-Highlight Data annotation model. According to the experiment, in the 4x4 grid size,

there is improvement when we use Feature-Highlight data annotation with the attention mod-

ule except for the ResNeXt-101 with the SE attention module and ResNeXt-50 with GCBAM

attention module. In the 8x8 grid size, there is a little improvement of all models when we use

Feature-Highlight data annotation with the attention module. Furthermore, the ResNeXt-101

with Feature-Highlight data annotation method shown the best performance in the 4x4 grid

which RMSE is 3.1821. And the ResNeXt with SE attention module and Feature-Highlight

data annotation method shown the best performance in the 8x8 grid which RMSE is 1.4876.

Furthermore, more than half of the machine learning model with FH data annotation shown bet-

ter performance than the original model. It means our FH data annotation method performed

well in the RCRS.
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V Using ML Models in A* Search

Disasters such as earthquakes and tsunami can cause significant destruction to a city and hurt

many people. To reduce the amount of the dead troll, fast disaster response to rescue survivors

in a disaster zone is of paramount importance. But the problem is all the current method to

manage disaster environment is all done by human and their work burden is too much to save

the people as much as possible. Especially, find the location of people who need rescue in the

disaster zone spend a considerable amount of time, which is one of the most important issues in

disaster relief. However, if we can predict the location of injured people in a disaster situation,

the time to save people can significantly reduce and this will a great positive effect on disaster

relief. In this thesis, we propose the Treasure Hunt Problem to study the search strategy using

in the disaster situation. In the disaster situation, the machine learning model has to predict

the location of more than one civilian who needs rescue. But this is a complicated multi-agent

problem. Therefore, we study a simpler problem called the Treasure Hunt Problem, in which

there is only one hidden treasure. In this problem, the treasure is like an injured civilian in the

disaster zone, but there is only one treasure in this problem

5.1 Treasure Hunt Problem

The treasure hunt problem is the problem that the hunter tries to find the treasure. In this

problem, the treasure is locating in one cell, and the hunter is initially locating in another cell

in the discretized map into a grid of a given size. The goal is this problem, the hunter should

find the treasure as quickly as possible. And we divided this problem into two cases: (1) when

the hunter moves the cell to find the treasure, there is no cost, (2) when the cell moves, there is

a certain cost.

Figure 20: Example of hunter locate (1,1) and treasure locate (3,4) in 4x4 grid map

Here we assume that the hunter has knowledge for the first time. The hunter has a machine
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learning model that predicts the probability of distribution of the treasure in a grid. However,

the machine learning model is not perfect, and it predicts the probability distribution of the

treasure in a grid whose cell size is larger than the actual grid’s cell size. The goal is to find the

treasure as quickly as possible, using both (1) machine learning to predict the location of the

treasure and (2) a pathfinding algorithm that utilizes the machine learning model to find the

treasure. To solve this problem, we build the treasure hunt problem simulator to simulate the

hunter find the treasure using a machine learning model with a search strategy in the discrete

space. To solve the Treasure Hunt Problem, we develop the simulator to simulate the hunter try

to find the treasure location. In the simulator, the hunter is located to the (1,1) coordinates on a

discrete map divided into grids and the treasure location (xt, yt) is randomly chosen according to

a probability distribution P . The probability distribution P is the probability of locate treasure

in each cell f (x, y) where the x and y are the coordinates for each cell in a discrete map divided

into grids. And we assume that the map divided by the grid size of MP × MP , where the

1 ≤ x ≤MP and 1 ≤ y ≤MP .

5.2 The Machine Learning Model

In the simulator, the hunter tries to find the treasure using probability of existing treasure derived

from machine learning (ML) model. And the ML model generator generates ML models for the

agent using a probability distribution Q . The probability distribution Q is the probability

of existing treasure that ML model predict in each cell f ′ (x, y) where the x and y are the

coordinates for each cell in a discrete map divided into grids. Furthermore, the different between

the probability distribution P and Q that we assume that the machine learning model is not

perfect, and it predicts the probability distribution of the treasure in a grid whose cell size

is larger than the actual grid’s cell size. It means in the probability distribution Q , the map

divided by the grid size of MQ ×MQ , where the 1 ≤ x ≤ MQ , 1 ≤ y ≤ MQ and MQ ≤ MP

. To evaluate and compare machine learning models with different prediction accuracy, we use

Kullback–Leibler divergence to measure the distance between the probability distribution P for

putting the treasure in a map and the probability distribution Q given to the agent as a ML

model:

DKL (P ‖ Q) =

M∑
i=1

N∑
j=1

P (i, j) log

(
P (i, j)

Q (i, j)

)
(4)

where i and j is the coordination of discrete space, M and N is the maximum of X and Y-axis

of discrete space. In this equation, the P (i, j) is the probability of locate treasure derived from

probability distribution P and Q (i, j) is probability of existing treasure derived from probability

distribution Q . Therefore, when the DKL (P ‖ Q) = 0, the probability distribution P is equal

to Q and we said Q is truthful.
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5.3 The Search Strategy

In the treasure hunt problem, the hunter tries to find the treasure using probability with the

search strategy. And we recall our assumption, the hunter has a machine learning model that

predicts the probability of distribution of the treasure in a grid. With this probability distribu-

tion, the hunter uses two search strategies: (1) The probabilistic greedy search that the hunter

searches preferentially for the cell with the highest probability of existing treasure given by ML

model. In this search strategy, we focus on the first case problem (1) that the hunter can move

from one cell to any other cell without the cost. This means the agent can visit one cell that is

not adjacent to the current cell instantly. However, the agent still needs to spend the time to

explore a cell. (2) The probabilistically admissible heuristic A* search that the hunter searches

the cell determined by heuristic A* algorithm with the probability of existing treasure given by

the ML model. In this search strategy, the heuristic value of A* search is determined by the

method proposed in this thesis.

5.3.1 The Probabilistically Admissible Heuristic A* Search

In the A* search, if an admissible heuristic is adapted in an A* search algorithm, then this

algorithm would eventually find an optimal solution to the goal. And the search strategy to

become admissible heuristic, the estimated cost h (n) must be lower than or equal to the actual

cost (i.e., optimal cost) h∗ (n) of reaching the goal state h (n) ≤ h∗ (n). In the treasure hunt

problem, the ML model gives the probability of existing treasure (i.e., goal state) px,y to each

cell. According to this probability, we can probabilistically measure the actual cost of reaching

the treasure h∗ (n|P = px,y). For example, in the Figure ??, if the cost of the moving between

cells is 1, the probability of having a treasure in (3,3) is 30%, so the actual cost of reaching the

treasure is 4 in 30%. And the probability of having a treasure in (3,2) and (2,3) is 40%, so the

actual cost of reaching the treasure is 3 in 40%.

Figure 21: Example of the probabilistically measure the actual cost of reaching the treasure

And the heuristic value h is the estimated cost of reaching the treasure and if the heuristic
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value is lower than or equal to the actual cost of reaching the treasure, the search strategy

with heuristic value h is admissible. Therefore, the actual cost of reaching the treasure can

probabilistically measure, we can say that the estimated cost is probabilistically to be less than

or equal to the actual cost of reaching the treasure h (n) ≤ h∗ (n|P = px,y). It means that

the search strategy is probabilistically admissible according to the determined heuristic value

h . To determine the heuristic value h , we defined the threshold probability value called λ

that is a value that guarantees the minimum probability of admissible of the search strategy.

Therefore, the hunter searches the treasure with the Probabilistically Admissible Heuristic A*

search strategy in this below following order:

1. Define the vector C which consist of Cx,y = {px,y, Dx,y} , where x, y is the coordinate of

the map divided by grid, px,y is the probability of existing treasure f ′ (x, y) and Dx,y is

the Manhattan distance of coordinate (x, y) to the hunter location.

2. Insert the Cx,y which has the highest px,y of the vector C into the queue Q and delete the
Cx,y in the vector C until it is larger than the threshold probability value λ .

3. Select the lowest Dx,y in queue Q as the heuristic value h and the hunter start to A*
search according to the heuristic value h that derived from the queue.

4. After search, set the px,y of the searched cell to zero, and normalizes px,y of the other
remaining cells.

5. Go back to the (1) and repeat the search process until find the treasure.

5.4 Assumption

In this study, there is two assumptions for the Treasure Hunt Problem to make a more realistic

problem. First, we assume that the machine learning model is not perfect, and it predicts the

probability distribution of the treasure in a grid whose cell size is larger than the actual grid’s cell

size. Therefore, the ML model generator generates ML models for the agent using a probability

distribution Q , and the map divided by the grid size of MQ ×MQ , where the 1 ≤ x ≤ MQ ,

1 ≤ y ≤ MQ. However, the machine learning model is not perfect, so that MQ can lower than

MP . If theMQ ≤MP , we divide the each grid cell of probability in Q to calculate DKL (P ‖ Q).

It means the probability of each grid cell in Q to Q(i,j)
(MP /MQ)2

. For example, if the treasure locate in

64x64 grid cell and the machine learning model predict the treasure location probability in 32x32

grid cell, the probability of each grid cell in Q which Q (i, j) to Q(i,j)
4 . Second, we assume that

the agent can move from one cell to another cell in no time when we use The probabilistic greedy

search as the search strategy. However, the agent still needs to spend time to explore a cell.

And The probabilistically admissible heuristic A* search strategy relaxes the second assumption.

37



5.5 Experiment Results

In the second part, we propose the Treasure Hunt Problem. In RCRS, the rescue team has to

search more than one injured people and it is a complicated multi-agent problem. Therefore,

study a simpler problem called the Treasure Hunt Problem, in which there is only one rescue crew

search the only one injured civilian. In this problem, we assume that the location of the treasure

is determined based on the probability distribution, and the ML model predicts the distribution

of probability that treasure exists for each coordinate within the map. To solve this problem,

we propose two search strategies that makes use of the ML model to improve the effectiveness

of a search mission: (1) the probabilistic greedy search that the hunter searches preferentially

for the cell with the highest probability of existing treasure given by ML model; and (2) the

probabilistically admissible heuristic A* search that the hunter searches the cell determined by

heuristic A* search with the probability of existing treasure given by ML model.

5.5.1 The Probability Distribution

In this study, the hunter is located to the (1,1) coordinates on a discrete map divided into grids

and the treasure location (xt, yt) is randomly chosen according to a probability distribution P .

The probability distribution P is the probability of locate treasure in each cell f (x, y) where the

x and y are the coordinates for each cell in a discrete map divided into grids. In this experiment,

we assume that probability distribution P as the Multivariate Gaussian distribution. And the

f (x, y) follow below the Multivariate Gaussian distribution with the parameter µ and Σ.

f (x, y) = 1

2πσXσY
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(x−µX)2

σ2
X

+ (y−µY )2

σ2
Y
− 2ρ(x−µX)(y−µY )

σXσY

])
(5)

where ρ is the correlation between x and y with σX > 0 and σY > 0 . And the mean and

covariance matrix, where µX > 0 and µY > 0 should positive integer

µ =

(
µX

µY

)
, Σ =

(
σ2X ρσXσY

ρσXσY σ2Y

)
(6)

The parameters vector of Multivariate Gaussian distribution µ and Σ chosen different depending

on the experiment. And normalize the value at the center of a cell across the grid, such that

the sum of all values in all cells is 1. And the probability distribution Q follow the Multivariate

Gaussian distribution as well with the different parameter µ′ and Σ′. The parameters vector

µ′ and Σ′ chosen also different depending on the experiment. And normalize the value at the

center of a cell across the grid, such that the sum of all values in all cells is 1.
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5.5.2 The Probabilistic Greedy Search

In this experiment, we evaluate the search time according to the different grid sizes and the

machine learning model accuracy with The Probabilistic Greedy Search Strategy. To evaluate

our search strategy, We simulate the hunter find the treasure in 64x64 grid map, and the trea-

sure location randomly chosen according to a multivariate Gaussian distribution P with the

parameter is µ =

(
50

50

)
, Σ =

(
8 0

0 0

)
. And the hunter has a machine learning model to

predict the probability of distribution of the treasure in a grid. The hunter’s ML model is a

multivariate Gaussian distribution Q as well with the parameter that makes the DKL (P ‖ Q)of

probability distribution P and Q to be 1, 4, 8, 16, 24, 32, 40, 48, 64 and 96. The hunter

searches preferentially for the cell with the highest probability of existing treasure given by the

ML model. In this experiment, we evaluate the search time according to the grid size of the

different ML models. In the graph of Figure. 22, the search time which is the value of the y-axis

is the number of cells that the hunter has searched until a treasure is found multiplied to the

time to search one cell. And we assume that the time to search one cell is 1
Gridsize . We can say

that the smaller the search time, the higher the performance of the model. We have tested the

grid size to 1x1, 4x4, 8x8, 16x16, 32x32 and 64x64. For each grid size, we took the average of

the search time of the 10,000 times of simulation and plotted a graph within 1x1 to 64x64 with

different colors according to the different DKL (P ‖ Q)of ML models.

Figure 22: Search time according to DKL (P ‖ Q) and grid size of the probabilistic greedy search

The result shows that where the larger DKL (P ‖ Q), the average search time larger. In common

sense, if the machine learning model accuracy lower, the search time going to lower too. And
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the result also followed the same results as common sense. And recall our assumption, the

probabilistic greedy search jumps the cell without cost so that it is hard to observe the efficiency

of grid size and accuracy. Therefore, we test the machine learning model with the probabilistically

admissible heuristic A* search

5.5.3 The Probabilistically Admissible Heuristic A* Search: Find the Optimal λ

In this experiment, we find the optimal parameter of the probabilistically admissible heuristic

A* search to evaluate the search time of this search strategy. The probabilistically admissible

heuristic A* search has the parameter called the λ which is how much admissible this search

strategy will allow. Therefore, as the first step of the experiment, We simulate the hunter find

the treasure in 32x32 grid map, and the treasure location randomly is chosen according to a

multivariate Gaussian distribution P with the parameter is µ =

(
25

25

)
, Σ =

(
8 0

0 8

)
. And

The hunter’s ML model is a multivariate Gaussian distribution Q as well with the parameter

that makes the DKL (P ‖ Q)of probability distribution P and Q to be 2, 4, 6, 8, 16, and 32.

The hunter searches the probabilistically admissible heuristic A* search with the probability of

existing treasure given by the ML model. We evaluate the search time according to the threshold

probability value λ to 10%, 20%, 30% . . . 100% and the different ML models. And as the first

step of the experiment, we test only 16x16 grid size of the machine learning prediction Q . In this

experiment, the search time is the number of cells that the agent has searched until a treasure

is found, multiplied to the time to search one cell. And we assume that the time to search one

cell is 1
Gridsize .

Figure 23: Search time according to DKL (P ‖ Q) and λ

The result shows that the existing optimal λ that minimum time to search the treasure ac-
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cording to the model accuracy DKL (P ‖ Q). For example, when the machine learning model

of DKL (P ‖ Q)is 1, 2, 4 and 32, there is one global optimal λ value which is 10%. The result

shows that after the search time is decreased from 0% to 10% and then increases after that.

And when the machine learning model of DKL (P ‖ Q)is 8 and 16, there is one global optimal

λ value which is 30%.

Table 1: The optimal λ for each grid size compare to different DKL (P ‖ Q)

Grid Size

DKL (P ‖ Q) 1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32

1 10% 10% 10% 10% 10% 10%

2 10% 10% 10% 10% 10% 10%

4 10% 0% 10% 10% 10% 10%

8 10% 0% 20% 10% 30% 10%

16 10% 10% 10% 10% 30% 30%

32 10% 10% 70% 10% 10% 30%

Furthermore, not only to 32x32 grid sizes but also to other grid sizes shown the similar graph

patterns which represent there is optimal λ exist according to the experiment. This shows that

the optimal value of threshold λ, a parameter for The Probabilistically Admissible Heuristic

A* Search exists. Therefore, we found the optimal λ for each grid size compare to different

DKL (P ‖ Q). And the table 1 shows that the different optimal λ according to the different

accuracy of the machine learning model.

5.5.4 The Probabilistically Admissible Heuristic A* Search: Find the Optimal

Grid Size

In this experiment, we evaluate the search time according to the different grid size with optimal λ.

We simulate the hunter find the treasure in a 32x32 grid map, and the treasure location randomly

is chosen according to a multivariate Gaussian distribution P and Q with the parameter is same

as the previous experiment. We evaluate the search time according to the grid size of the different

ML models. And the λ which is the parameter of the probabilistically admissible heuristic A*

search to set the optimal λ. The search time which is the value of the y-axis is the number

of cells that the hunter has searched until a treasure is found multiplied to the time to search

one cell. We have tested the grid size to 1x1, 2x2, 4x4, 8x8, 16x16 and 32x32 of the machine

learning prediction Q . For each grid size, we took the average of the search time of the 10,000

times of simulation with the different λ and plotted a graph within 1x1 to 64x64 with different

colors according to the different DKL (P ‖ Q)of ML models.
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Figure 24: Search time according to DKL (P ‖ Q) and grid size

The result shows that the grid size which shows the minimum search time is different depending

on the accuracy of the model. On average, the higher the accuracy of the machine learning

model on all grid sizes, the shorter the search time. When the KL (i.e., DKL (P ‖ Q)) is 32, it

means the low accuracy of the machine learning model, the average search time is 0.845. And

when the KL is 1, it means the high accuracy of the machine learning model, the average search

time is 0.775. However, each machine learning model with different accuracy shows that there

is a certain grid size that shows the global or local minimum search time.

5.6 Conclusions

In this part, we study the Treasure Hunt Problem with the search strategy that the probabilistic

greedy search and the probabilistically admissible heuristic A* search. The probability distribu-

tion used in the locating of treasure and the machine learning model is Multivariate Gaussian

distribution, and we test the different parameters of this distribution. In this part, we study

the relationship of the accuracy of the machine learning model and grid size with the Treasure

Hunt problem. The grid size represents the precision of prediction and the KL-divergence of the

probability distribution of the machine learning model and locating the treasure represent the

accuracy of prediction. Therefore, we test the two search strategies with different KL-divergence

and grid size. The results in the two search strategies showed two different aspects: the proba-

bilistic greedy search and the probabilistically admissible heuristic A* search.

The probabilistic greedy search of result shows that where the largerDKL (P ‖ Q), the average

of search time larger. In common sense, if the machine learning model accuracy lower, the

search time going to lower too. And the result also followed the same results as common sense.

However, after the grid size 32x32, the search time was only a small change. And when the
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machine learning model of accuracy (i.e., KL-divergence of ML model) is too low or too high,

there is a little variation in search time with grid size. It means that after some point of grid size

(i.e., the precision of the prediction), increasing the size of the grid is less efficient depending on

the accuracy of the machine learning model. And recall our assumption, the probabilistic greedy

search jumps the cell without cost so that it is hard to observe the efficiency of grid size and

accuracy. Therefore, we test the machine learning model with the probabilistically admissible

heuristic A* search.

The probabilistically admissible heuristic A* search of result shows that the grid size which

shows the minimum search time is different depending on the accuracy of the model. On average,

the higher the accuracy of the machine learning model on all grid sizes, the shorter the search

time. When the KL (i.e., DKL (P ‖ Q)) is 32, it means the low accuracy of the machine learning

model, the average search time is 0.845. And when the KL is 1, it means the high accuracy of

the machine learning model, the average search time is 0.775. However, each machine learning

model with different accuracy shows that there is a certain grid size that shows the global or

local minimum search time. For example, the machine learning model in which KL is 16, after

the 4x4 grid size, the search time is longer when the grid size larger. And the machine learning

model in which KL is 32, after the 8x8 grid size, the search time is longer when the grid size

larger. Otherwise, the machine learning model in which KL is lower than 8, there is a local

point of grid size which is low search time but the shorter search time when the grid size larger.

It means that when the KL (i.e., the accuracy of the model) is low, there is an optimal grid

size (i.e., the precision of model) with minimum search time. And the KL is high, there is a

local optimal grid size. However, the larger the grid size, the less search time. According to this

experiment, when the search strategy using a machine learning model, there is optimal precision

depends on the accuracy of the machine learning model. And as we expected, the optimal point

is shown when the accuracy of the machine learning model is low. In the last part, we apply this

study to the first part to optimize the precision in a deep learning model to locate the injured

people in disaster zones.
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VI Tuning Precision of Locations in Deep Learning Model for

Locating Injured People

In the last part, we merge the first and second parts to search for the location of the most

density injured people area. In the first part, we predicted the density of injured people in the

disaster zone divided into the grid. In the second part, we proposed the Treasure Hunt Problem,

in which there is only one rescue crew search the only one injured civilian. And the goal of the

third part is to find the most density injured area based on the number of injured people which

predicted in the first part and the search strategy proposed in the second part. Therefore, in the

Treasure Hunt Problem, only one rescue crew (i.e., the rescue team) search the only one injured

civilian (i.e., the most density injured area). And the search strategy of rescue crew is the The

probabilistic greedy search and The probabilistically admissible heuristic A* search which based

on the probability distribution of converted the injured people density predicted by the machine

learning model.

6.1 Treasure Hunt with Hidden Injured Problem in RCRS

In the second part, the rescue team search injured people according to the specific search strategy

with the machine learning model. And this machine learning model used in the search strategy is

based on the multivariate Gaussian distribution. However, in this part, we replace the machine

learning model used in the search strategy to the machine learning model studied in the first

part. We convert the injured people density predicted by the machine learning model to the

probability distribution. And the rescue team search the most density injured people area

according to the search strategy of the second part based on this probability distribution. In

this part, first, we predict the density of injured people in the RCRS using the first part of

the machine learning model. As a first part of assumption, the map divided by the grid size

of M ×N , and the number of injured civilians in each grid cell Ni,j where the i = 1, 2, . . . ,M

and j = 1, 2, . . . , N . Then we divide each predicted number of injured people Ni,j to the total

number of injured people T is
∑M

i=1

∑N
j=1Ni,j . Therefore, the probability of existing treasure

at each grid cell Pi,j is
Ni,j

T
.
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Figure 25: Treasure Hunt problem with RCRS

As the Treasure Hunt problem of the second part, the hunter is located to the (1,1) coordinates

on a discrete map divided into grids and the treasure location (xt, yt) is the most density injured

people grid cell location. And the hunter tries to find the treasure using the probability of existing

treasure derived from the machine learning (ML) model. And the ML model generator generates

ML models for the agent using a probability distribution Q . The probability distribution Q is

the probability of existing treasure that ML model predict in each cell f ′ (x, y) where the x

and y are the coordinates for each cell in a discrete map divided into grids. And in this part

we set the probability of existing treasure that ML model predict in each cell f ′ (x, y) to Pi,j .

And the hunter uses two search strategies: (1) The probabilistic greedy search that the hunter

searches preferentially for the cell with the highest probability of existing treasure given by the

ML model. In this search strategy, we focus on the first case problem (1) that the hunter can

move from one cell to any other cell without the cost. This means the agent can visit one cell

that is not adjacent to the current cell instantly. However, the agent still needs to spend the

time to explore a cell. (2) The probabilistically admissible heuristic A* search that the hunter

searches the cell determined by heuristic A* algorithm with the probability of existing treasure

given by the ML model.

6.2 The Machine Learning Model and The Search Strategy

To predict the density of injured people in RCRS using image-based data, we train the machine

learning model using simulation screenshot images. We consider that all frames of video clips in

disaster situations are independent images. Therefore, we choose one frame randomly in images

sequence of a disaster scenario in RCRS to train the machine learning model. The model’s inputs

are simulated images created from RCRS. And CNN extracts images features, fully-connected

layer output the number of injured people vectors in each grid cell. In this part, we use several

machine learning models used in part one to predict the number of injured people. We used five

different machine learning models for prediction based on the accuracy: (1) Inception-ResNet-V2

with CBAM attention module and Feature-Highlight data annotation; and (2) Xception with

GCBAM attention module; and (3) DenseNet-169; and (4) DenseNet-201; and (5) ResNeXt-101.
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Table 2: The accuracy of ML model compare to different grid size

Grid Size

ML model 1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32

Inception-ResNetV2+CBAM+FH 7.4211 5.2128 2.0130 1.0477 0.5595 0.2950

Xception+GCBAM 7.4371 4.7445 2.5771 1.0701 0.5756 0.2766

DenseNet-201 14.5679 4.4213 3.4664 1.3065 0.5945 0.3382

ResNeXt-101 45.6001 11.6522 3.9617 1.7411 0.8134 0.3827

As same as part one, we create a total of 11,000 disaster scenarios and we choose 10,000 scenarios

to train the machine learning model, 1,000 scenarios to test the machine learning model. For

each scenario, we divide the simulation map into a grid size 1x1, 2x2, 4x4, 8x8, 16x16 and 32x32.

And we compared the actual density of injured civilians in each grid cell (i.e., the ground truth)

with the one predicted by the machine learning model and calculated the root mean squared

error (RMSE) between the ground truth and the predicted numbers. The RMSE of the machine

learning model shown as table 2, Inception-ResNet-V2 with the CBAM attention module and

Feature-Highlight data annotation model has the best performance and ResNeXt-101 model has

the worst performance. And we predict the number of injured citizens in each grid cell with

five models of different accuracy, and then we search the most density injured people grid cell

using the two search strategy as same as the part two: The probabilistic greedy search and The

probabilistically admissible heuristic A* search. This problem is the same as the Treasure Hunt

problem, however, the hunter converts to the rescue team and the treasure convert to the most

density injured people grid cell.

6.3 Experiment Results

In the last part, we merge the first and second parts to search for the location of the most

density injured people area. To predict the location, we predict the number of injured people

with several ML models used in the first part and we convert the injured people density predicted

to the probability distribution. And the rescue team search the most density injured people area

according to the search strategy of the second part based on this probability distribution.

6.3.1 The Probabilistic Greedy Search

In this experiment, we simulate the hunter to find the treasure in the 32x32 grid map, and the

treasure location is the most density of injured people grid cell. And the hunter has a machine

learning model to predict the probability distribution of the treasure in a grid. This probability

distribution is converted from the injured people density predicted by the machine learning

model. The hunter’s ML model is the four different machine learning models for prediction based

on the accuracy: (1) Inception-ResNet-V2 with CBAM attention module and Feature-Highlight
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data annotation; and (2) Xception with GCBAM attention module; and (3) DenseNet-169; and

(4) ResNeXt-101. The hunter searches preferentially for the cell with the highest probability

of existing treasure given by the ML model. In this experiment, we evaluate the search time

according to the grid size of the different ML models. In the graph of Figure. 26, the search

time which is the value of the y-axis is the number of cells that the hunter has searched until a

treasure is found multiplied to the time to search one cell. And we assume that the time to search

one cell is 1
Gridsize . We can say that the smaller the search time, the higher the performance of

the model. We have tested the grid size to 1x1, 4x4, 8x8, 16x16 and 32x32. For each grid size,

we took the average of the search time of the 10,000 times of simulation and plotted a graph

within 1x1 to 32x32 with different colors according to the different ML models.

Figure 26: Search time according to the different ML model and grid size

6.3.2 The Probabilistically Admissible Heuristic A* Search: Find the Optimal λ

In this experiment, we evaluate the search time according to the different grid sizes and the

machine learning model accuracy with The Probabilistic Greedy Search Strategy. And we simulate

the hunter find the treasure in 32x32 grid map, and the treasure location is the most density

of injured people grid cell. The hunter has a machine learning model to predict the probability

distribution of the treasure in a grid. This probability distribution is converted from the injured

people density predicted by the machine learning model. The hunter’s ML model is the four

different machine learning models for prediction based on the accuracy: (1) Inception-ResNet-V2

with CBAM attention module and Feature-Highlight data annotation; and (2) Xception with
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GCBAM attention module; and (3) DenseNet-169; and (4) ResNeXt-101. The hunter searches

the probabilistically admissible heuristic A* search with the probability of existing treasure given

by the ML model. We evaluate the search time according to the threshold probability value λ

to 10%, 20%, 30% . . . 100% and the different ML models. In this experiment, the search time

is the number of cells that the agent has searched until a treasure is found, multiplied to the

time to search one cell. And we assume that the time to search one cell is 1
Gridsize . We can

say that the smaller the search time, the higher the performance of the model. First of all, We

have tested the grid size to 32x32. For each grid size, we took the average of the search time

of the 10,000 times of simulation and plotted a graph within λ is 10%, 20%, 30% . . . 100% with

different colors according to the different accuracy of ML models.

Figure 27: Search time according to DKL (P ‖ Q) and λ

The result shows that the existing optimal λ that minimum time to search the treasure accord-

ing to the model accuracy DKL (P ‖ Q). And the optimal λ can be multiple or one. In this

experiment, we plotted the four different ML model with the grid size to 8x8. Figure ??, when

the InceptionResNet-v2 with CBAM attention, model, the global optimal λ is 10% where λ

decreases from 0% to 10% and then increases after that. And when the Xception with GCBAM

attention model, the global optimal λ is 30% and the local optimal λ is 10%, 20%, and 40%.

The other models of global optimal λ is 20%.
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Table 3: The optimal λ for each grid size compare to different DKL (P ‖ Q)

Grid Size

DKL (P ‖ Q) 1 x 1 2 x 2 4 x 4 8 x 8 16 x 16 32 x 32

Inception-ResNetV2 + CBAM + FH 70% 80% 20% 20% 20% 40%

Xception + GCBAM 70% 80% 40% 30% 10% 50%

DenseNet-201 70% 10% 20% 20% 20% 50%

ResNeXt-101 70% 80% 10% 20% 20% 60%

Furthermore, not only to 16x16 grid sizes but also to other grid sizes shown the similar graph

patterns which represent there is optimal lambda exist according to the experiment. This shows

that the optimal value of threshold λ, a parameter for The Probabilistically Admissible Heuristic

A* Search exists. Therefore, we found the optimal λ for each grid size compare to different ML

models. And the table 3 shows that the different optimalaccording to the different accuracy of

the machine learning model

6.3.3 The Probabilistically Admissible Heuristic A* Search: Find the Optimal

Grid Size

In this experiment, we evaluate the search time according to the different grid size with optimal

λ. We simulate the hunter find the treasure in the 32x32 grid map, and the treasure location

is the most density of injured people grid cell. And the hunter has the machine learning model

to predict the probability distribution of the treasure in a grid. This probability distribution is

converted from the injured people density predicted by the machine learning model. The hunter’s

ML model is the four different machine learning models used in the previous experiment. The

hunter searches the probabilistically admissible heuristic A* search with the probability of existing

treasure given by the ML model. And We evaluate the search time according to the grid size

of the different ML models. And the λ which is the parameter of the probabilistically admissible

heuristic A* search to set the optimal λ. We have tested the grid size to 1x1, 2x2, 4x4, 8x8,

16x16 and 32x32. For each grid size, we took the average of the search time of the 10,000 times

of simulation and plotted a graph within 1x1 to 32x32 with different colors according to the

different ML models.
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Figure 28: Search time according to DKL (P ‖ Q) and grid size

6.4 Conclusions

In this part, we study the optimizing the grid size in the deep learning model to predict. We

test the search strategy that the probabilistic greedy search and the probabilistically admissible

heuristic A* search with the machine learning model to predict the injured people. And optimize

the grid size according to the accuracy of the machine learning model used in part one. In this

part, we study the relationship of the accuracy of the machine learning model and grid size

with the search strategy studied in the Treasure Hunt problem with the deep learning model to

predict the injured people. The grid size represents the precision of prediction and the RMSE

of the machine learning model represents the accuracy of prediction. Therefore, we test the

two search strategies with the different ML model and grid size. The results in the two search

strategies showed two different aspects: the probabilistic greedy search and the probabilistically

admissible heuristic A* search.

The probabilistic greedy search with the machine learning model to predict the injured people

of the result shows that when the accuracy of the machine learning model is low (i.e., DenseNet-

201 and ResNeXt-101 model), there is an optimal grid size which is the minimum search time.

And the accuracy of the machine learning model is high (i.e., InceptionResNet-v2 and Xception),

when the grid size is larger, the search time is less. In the DenseNet-201 model, the grid size of

2x2 is the local optimal grid size that the search time is 0.21. And in the ResNeXt-101 model,

the grid size of 8x8 is the global optimal grid size that the search time is 0.13. On the other

hand, when the accuracy of machine learning is high, there is no optimal grid size and the larger

grid size, the less search time. In the InceptionResNet-v2 with the CBAM attention module and
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the Xception with the CBAM attention module, the search time keeps reduction when the grid

size is larger. In part two, we confirm that when the accuracy of machine learning is low, there

is an optimal grid size and in this part, We were able to see the same result. Moreover, using

the machine learning model to predict the injured people used in part one, the same results are

shown. And recall our assumption, the probabilistic greedy search jumps the cell without cost so

that it is hard to observe the efficiency of grid size and accuracy. Therefore, we test the machine

learning model used in part one with the probabilistically admissible heuristic A* search

The probabilistically admissible heuristic A* search of result (Figure.??) with the machine

learning model to predict the injured people shows similar to the result of The probabilistic greedy

search. When the InceptionResNet-v2 with the CBAM attention module model, the grid size is

larger, the search time is less. One different from the result of The probabilistic greedy search,

the Xception with the GCBAM attention module, shows the global optimal grid size 16x16.

Because of the The probabilistically admissible heuristic A* search, it requires more accuracy to

show the larger grid size, the less search time. And the DenseNet-201 and the ResNeXt-101,

the global and local optimal gird size shown as 2x2 and 16x16. According to this experiment,

when the search strategy using a machine learning model, there is optimal precision depends on

the accuracy of the machine learning model. Furthermore, as we expected, the optimal point is

shown when the accuracy of the machine learning model is low when we test the deep learning

model to locate the injured people in disaster zones.
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VII Summary and Future Work

In this study, we propose to develop an AI system to predict the location of injured people in

a disaster area. In this research, our system has three major parts: (1) the prediction of the

density of injured people in a grid; and (2) the strategy of the rescue team to search for injured

people; and (3) the deployment the rescue team to search the location of the most density

injured people area according to the first and second part. In the first part, we developed a

deep learning software package that consists of state of the art deep learning technique such

as attention module and data annotation to predict the density of injured civilians. Our work

uses a disaster simulator called RoboCup Rescue Simulation (RCRS). To predict the density of

injured people in RCRS, we train the machine learning model using the two cases of the image

data: (1) single image frame such as a satellite image; and (2) multiple image sequence frame

such as disaster video clip. Furthermore, we evaluate our ML model in the other two domains:

(1) the prediction of the location of crime in Chicago; and (2) the prediction of the location

of RSNA Pneumonia. In this part, we find the best machine learning model in the RCRS

problem compare to the different state-of-art deep learning models. And we attach the Squeeze

and excitation (SE), Convolutional Block Attention Module (CBAM) and Grid Convolutional

Block Attention Module (GCBAM) attention module to the machine learning model to improve

the performance. Furthermore, we propose the Feature-Highlight Data annotation method that

attention module can more focus on the feature of images. And we compare the machine learning

model with our Feature-Highlight data annotation method and non-version, we confirm that our

Feature-Highlight data annotation improves the performance of the machine learning model with

the attention module. And we evaluate our best performance of the machine learning model to

other domains and confirm that the best performance of the machine learning model also well

performs on the other domains which deal with the same problem as RCRS.

In the second part, we propose the Treasure Hunt Problem. In RCRS, the rescue team has

to search more than one injured people and it is a complicated multi-agent problem. Therefore,

study a simpler problem called the Treasure Hunt Problem, in which there is only one rescue

crew search the only one injured civilian. In this problem, we assume that the location of the

treasure is determined based on the probability distribution, and the ML model predicts the

distribution of probability that treasure exists for each coordinate within the map. To solve

this problem, we propose two search strategies that makes use of the ML model to improve

the effectiveness of a search mission: (1) the probabilistic greedy search that the hunter searches

preferentially for the cell with the highest probability of existing treasure given by ML model;

and (2) the probabilistically admissible heuristic A* search that the hunter searches the cell

determined by heuristic A* search with the probability of existing treasure given by ML model.

In this experiment, we find that when the KL (i.e., the accuracy of the model) is low, there is

an optimal grid size (i.e., the precision of model) with minimum search time. And the KL is

high, there is a local optimal grid size. However, the larger the grid size, the less search time.
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According to this experiment, when the search strategy using a machine learning model, there is

optimal precision depends on the accuracy of the machine learning model. And as we expected,

the optimal point is shown when the accuracy of the machine learning model is low. In the last

part, we apply this study to the first part to optimize the precision in a deep learning model to

locate the injured people in disaster zones.

In the last part, we merge the first and second parts to search for the location of the most

density injured people area. To predict the location, we predict the number of injured people

with several ML models used in the first part and we convert the injured people density predicted

to the probability distribution. And the rescue team search the most density injured people area

according to the search strategy of the second part based on this probability distribution. The

result shows that when the accuracy of the machine learning model is low (i.e., DenseNet-201 and

ResNeXt-101 model), there is an optimal grid size which is the minimum search time. And the

accuracy of the machine learning model is high (i.e., InceptionResNet-v2 and Xception), when

the grid size is larger, the search time is less. Therefore, we evaluate the search time according

to the different ML model, we find the optimal grid size which showed the best performance

(i.e., minimum search time) depend on the different accuracy of ML models.

In the future, we intend to our attention module and data annotation to apply the other

domain (i.e., CIFAR). In this study, we evaluate our attention module (GCBAM) and Feature-

Highlight annotation in several domains. However, the RSNA domain is not enough to evaluate

our research. Demonstrating the performance improvements of our research in other diverse

domains will have a great positive impact on expanding research direction and demonstrating

performance. Furthermore, we intend to our machine learning model to evaluate the other city.

In this study, we evaluate our machine learning model to predict the city of Japan, Kobe. This

is the urban city used in the RoboCup competition. However, RCRS can simulate not only the

city but also any other region. Therefore, if we evaluate our machine learning model not only in

Kobe but also in cities in many other regions, this can reduce bias towards model performance

evaluation.

We intend to expand the Treasure Hunt Problem to search not only one civilian but also

more than one civilians. In this study, we evaluate our path-finding strategy to search only one

injured person. Since there are several injuries in actual disaster situations, our research may not

be enough to apply to real situations. Therefore, if we expand our search strategy to evaluate

the search for multiple injured people in disaster zones, It will show that the Treasure Hunt

problem could be more generalized, and some assumptions could be eliminated to evaluate the

more accurate and realistic search strategy. And we intend to study the relationship between

the probabilistically admissible heuristic A* search of parameters and search time with Treasure

Hunt Problem. In this study, we turned the parameter of the search strategy (i.e., threshold λ)

and grid size by the result of the experiment. Therefore, from further study, if we can derive these

parameters mathematically, not experimentally, we can evaluate the performance of our search

strategy and the machine learning model more precisely as mathematically experiment result.

53



Furthermore, It can lead to improved performance of models and search strategies. Therefore,

we also can compare to our search strategy and other strategies in the other domains.

Lastly, we expand the scope of part three. In the study, the goal of the third part is the

rescue crew search the areas that the most density of injured people so that the crew can save the

injured people as much as possible at the least amount of time. However, in the real world, the

rescue crew may find the other injured people while searching. Therefore, expand our research

scope, our search strategy allow the rescue crew to save the other injured people while searching

the most density of injured people area. This will be a study on the dilemma between the

capacity of the rescue crew and the time to rescue all injured people. And this study will have

a great positive impact on the performance of the efficiency of our search strategy.
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VIII Appendix

This section is the appendix to describe in detail the result of the experiment.

8.1 Image-based Prediction in RCRS

This table describes the result of RMSE that the state-of-art deep learning model with SE,

CBAM and GCBAM attention module in RCRS. And the machine learning model predicts the

density of injured people using the single-frame image.

Description Parameters Grid Size RMSE

ResNet-50 [16] 21.30M 4x4 2.216247

21.33M 8x8 1.104256

ResNet-101 41.98M 4x4 2.155278

42.01M 8x8 1.218160

ResNet-152 57.94M 4x4 2.311191

57.97M 8x8 1.092777

DenseNet-121 [34] 7.05M 4x4 2.182839

7.10M 8x8 1.271531

DenseNet-169 12.67M 4x4 2.999014

12.75M 8x8 1.511546

DenseNet-201 18.35M 4x4 2.305295

18.44M 8x8 1.146064

Inception-ResNetV2 [32] 54.37M 4x4 2.210150

54.44M 8x8 1.050896

Inception-ResNetV2 + SE 71.40M 4x4 2.360719

71.48M 8x8 1.128776

Inception-ResNetV2 + CBAM 71.41M 4x4 2.142055

71.47M 8x8 1.067117

Inception-ResNetV2 + GCBAM 71.47M 4x4 2.137344

71.54M 8x8 1.054906

InceptionV3 [33] 21.84M 4x4 2.400644

21.93M 8x8 1.123869

Xception [19] 20.89M 4x4 2.110339

21.00M 8x8 1.093639

Xception + SE 22.38M 4x4 2.371548

22.47M 8x8 1.300128

Xception + CBAM 22.38M 4x4 2.231953

22.48M 8x8 1.099724
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Xception + GCBAM 22.38M 4x4 2.264135

22.50M 8x8 1.148024

8.2 Image-based Prediction in RCRS: Feature-Highlight and Attention mod-
ule

This table describe the result of RMSE that the Inception-ResNetV2 and Xception with our

Feature-Highlight data annotation and attention module. The FH-RMSE means the result of

RMSE that the machine learning model use our Feature-Highlight data annotation.

Description Parameters Grid Size RMSE FH-RMSE

Inception-ResNetV2 [32] 54.37M 4x4 2.216150 2.114966

54.44M 8x8 1.114428 1.194564

Inception-ResNetV2 + SE 71.40M 4x4 2.360719 2.067913

71.48M 8x8 1.128776 1.799768

Inception-ResNetV2 + CBAM 71.41M 4x4 2.142055 2.013006

71.47M 8x8 1.067117 1.184809

Inception-ResNetV2 + GCBAM 71.47M 4x4 2.137344 2.445398

71.54M 8x8 1.054906 1.154894

Xception [19] 20.89M 4x4 2.179926 2.395909

21.13M 8x8 1.102236 1.231165

Xception + SE 22.38M 4x4 2.371548 2.186312

22.47M 8x8 1.300128 1.211052

Xception + CBAM 22.38M 4x4 2.231953 2.095201

22.48M 8x8 1.099724 1.237198

Xception + GCBAM 22.38M 4x4 2.264135 2.394272

22.50M 8x8 1.148024 1.556173

8.3 Chicago Crime Location Prediction

This table describe the result of RMSE that the state-of-art deep learning model with SE, CBAM

and GCBAM attention module in Chicago Crime dataset domain.

Description Parameters Grid Size RMSE

ResNet-50 [16] 21.30M 4x4 0.249773

21.33M 8x8 0.295023

ResNet-101 41.98M 4x4 0.176076

42.01M 8x8 0.275893

ResNet-152 57.94M 4x4 0.306450
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57.97M 8x8 0.226034

DenseNet-121 [34] 7.05M 4x4 0.186130

7.10M 8x8 0.315652

DenseNet-169 12.67M 4x4 0.189858

12.75M 8x8 0.208664

DenseNet-201 18.35M 4x4 0.203783

18.44M 8x8 0.260121

Inception-ResNetV2 [32] 54.36M 4x4 0.169207

54.43M 8x8 0.257702

Inception-ResNetV2 + SE 25.14M 4x4 0.161596

25.24M 8x8 0.233030

Inception-ResNetV2 + CBAM 25.15M 4x4 0.149808

25.25M 8x8 0.228853

Inception-ResNetV2 + GCBAM 25.17M 4x4 0.197706

25.27M 8x8 0.158368

InceptionV3 [33] 21.83M 4x4 0.174180

21.93M 8x8 0.248352

Xception [19] 20.89M 4x4 0.152559

21.00M 8x8 0.292797

Xception + SE 21.23M 4x4 0.164500

22.34M 8x8 0.274904

Xception + CBAM 21.21M 4x4 0.215634

23.01M 8x8 0.189147

Xception + GCBAM 21.21M 4x4 0.200959

23.01M 8x8 0.195369

8.4 RSNA Pneumonia Detection Challenge

This table describe the result of RMSE that the state-of-art deep learning model with SE, CBAM

and GCBAM attention module in RSNA Pneumonia detection challenge domain.

Description Parameters Grid Size RMSE

ResNet-50 [16] 21.30M 4x4 0.157981

21.33M 8x8 0.190919

ResNet-101 41.98M 4x4 0.125325

42.01M 8x8 0.212713

ResNet-152 57.94M 4x4 0.176896

57.97M 8x8 0.165897

DenseNet-121 [34] 7.05M 4x4 0.172405
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7.10M 8x8 0.247393

DenseNet-169 12.67M 4x4 0.177953

12.75M 8x8 0.266117

DenseNet-201 18.35M 4x4 0.213121

18.44M 8x8 0.270242

Inception-ResNetV2 [32] 54.37M 4x4 0.185789

54.44M 8x8 0.239721

Inception-ResNetV2 + SE 71.40M 4x4 0.164949

71.48M 8x8 0.231415

Inception-ResNetV2 + CBAM 71.41M 4x4 0.197762

71.47M 8x8 0.217587

Inception-ResNetV2 + GCBAM 71.47M 4x4 0.212451

71.54M 8x8 0.215849

InceptionV3 [33] 21.84M 4x4 0.195492

21.93M 8x8 0.246776

Xception [19] 20.89M 4x4 0.211563

21.00M 8x8 0.185649

Xception + SE 22.38M 4x4 0.182790

22.47M 8x8 0.174921

Xception + CBAM 22.38M 4x4 0.185293

22.48M 8x8 0.174513

Xception + GCBAM 22.38M 4x4 0.231399

22.50M 8x8 0.150365

8.5 Video-based Prediction in RCRS

This table describe the result of RMSE that the state-of-art deep learning model with SE, CBAM

and GCBAM attention module in RCRS. And the machine learning model predict the density

of injured people using the multi-frame image.

Description Parameters Grid Size RMSE

ResNet-50 [16] 21.59M 4x4 3.221900

21.68M 8x8 1.482911

ResNeXt-50 + SE 28.41M 4x4 3.493942

28.57M 8x8 1.482978

ResNeXt-50 + CBAM 28.41M 4x4 3.904281

28.57M 8x8 1.490002

ResNeXt-50 + GCBAM 28.43M 4x4 3.845660

28.59M 8x8 1.469520
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ResNet-101 42.27M 4x4 3.395557

42.36M 8x8 1.673974

ResNeXt-101 + SE 52.10M 4x4 3.271026

52.26M 8x8 1.495123

ResNeXt-101 + CBAM 52.10M 4x4 3.235420

52.26M 8x8 1.492024

ResNeXt-101 + GCBAM 52.16M 4x4 3.640757

52.50M 8x8 1.493750

ResNet-152 58.22M 4x4 3.623339

58.31M 8x8 1.665147

DenseNet-121 [34] 7.34M 4x4 3.232334

7.49M 8x8 1.715784

DenseNet-169 12.95M 4x4 3.785897

12.52M 8x8 1.686833

DenseNet-201 18.64M 4x4 4.029794

18.79M 8x8 1.493864

ResNeXt-50 [18] 23.08M 4x4 3.759389

23.52M 8x8 1.690866

ResNeXt-101 42.58M 4x4 3.242727

42.40M 8x8 1.532850

Inception-ResNetV2 [32] 54.64M 4x4 3.724961

54.78M 8x8 1.719019

InceptionV3 [33] 22.12M 4x4 4.202212

22.28M 8x8 1.517941

Xception [19] 21.18M 4x4 3.832643

21.38M 8x8 1.732041

8.6 Video-based Prediction in RCRS: Feature-Highlight and Attention mod-
ule

This table describe the result of RMSE that the Inception-ResNetV2 and Xception with our

Feature-Highlight data annotation and attention module. The FH-RMSE means the result of

RMSE that the machine learning model use our Feature-Highlight data annotation.

Description Parameters Grid Size RMSE FH-RMSE

ResNet-50 [16] 21.59M 4x4 3.221900 3.221900

21.68M 8x8 1.482911 1.482911

ResNeXt-50 + SE 28.41M 4x4 3.493942 3.201041

28.57M 8x8 1.482978 1.477944
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ResNeXt-50 + CBAM 28.41M 4x4 3.904281 3.188726

28.57M 8x8 1.490002 1.479471

ResNeXt-50 + GCBAM 28.43M 4x4 3.845660 4.396645

28.59M 8x8 1.469520 1.469921

ResNet-101 42.27M 4x4 3.395557 3.182134

42.36M 8x8 1.673974 1.479393

ResNeXt-101 + SE 52.10M 4x4 3.271026 3.394058

52.26M 8x8 1.495123 1.467555

ResNeXt-101 + CBAM 52.10M 4x4 3.235420 3.201932

52.26M 8x8 1.492024 1.483710

ResNeXt-101 + GCBAM 52.16M 4x4 3.640757 3.201932

52.50M 8x8 1.493750 1.485297
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