9 research outputs found

    Thermal and Mechanical Properties of Poly(butylene succinate) Films Reinforced with Silica

    No full text
    In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate) (PBS-g-GMA) was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer

    Thermal and Mechanical Properties of Poly(butylene succinate) Films Reinforced with Silica

    No full text
    In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate) (PBS-g-GMA) was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer

    Comparison between the HLA-B∗58 : 01 Allele and Single-Nucleotide Polymorphisms in Chromosome 6 for Prediction of Allopurinol-Induced Severe Cutaneous Adverse Reactions

    No full text
    Severe cutaneous adverse drug reactions (SCARs) are life-threatening reactions. The strong association between the HLA-B∗58 : 01 allele and allopurinol-induced SCARs is well recognized. Screening for HLA-B∗58 : 01 allele before prescribing allopurinol in some populations has been recommended. Several single-nucleotide polymorphisms (SNPs) in chromosome 6 have been found to be tightly linked with the HLA allele, and these SNPs have been proposed as surrogate markers of the HLA-B∗58 : 01 allele. This study aimed to evaluate the association between three SNPs in chromosome 6 and allopurinol-induced SCARs in a Thai population. The linkage disequilibrium between the HLA-B∗58 : 01 allele and these SNPs was also evaluated. Results showed that three SNPs including rs9263726, rs2734583, and rs3099844 were significantly associated with allopurinol-induced SCARs but with a lower degree of association when compared with the HLA-B∗58 : 01 allele. The sensitivity, specificity, PPV, and NPV of these SNPs were comparable to those of the HLA-B∗58 : 01 allele. Although detection of the SNP is simpler and less expensive compared with that of the HLA-B∗58 : 01 allele, these SNPs were not perfectly linked with the HLA-B∗58 : 01 allele. Screening using these SNPs as surrogate markers of the HLA-B∗58 : 01 allele to avoid SCARs prior to allopurinol administration needs caution because of their imperfect linkage with the HLA-B∗58 : 01 allele
    corecore