1,659 research outputs found

    Absolute frequency measurements of 85Rb nF7/2 Rydberg states using purely optical detection

    Full text link
    A three-step laser excitation scheme is used to make absolute frequency measurements of highly excited nF7/2 Rydberg states in 85Rb for principal quantum numbers n=33-100. This work demonstrates the first absolute frequency measurements of rubidium Rydberg levels using a purely optical detection scheme. The Rydberg states are excited in a heated Rb vapour cell and Doppler free signals are detected via purely optical means. All of the frequency measurements are made using a wavemeter which is calibrated against a GPS disciplined self-referenced optical frequency comb. We find that the measured levels have a very high frequency stability, and are especially robust to electric fields. The apparatus has allowed measurements of the states to an accuracy of 8.0MHz. The new measurements are analysed by extracting the modified Rydberg-Ritz series parameters.Comment: 12 pages, 5 figures, submitted to New. J. Phy

    Nonlinear interaction between two heralded single photons

    Full text link
    Harnessing nonlinearities strong enough to allow two single photons to interact with one another is not only a fascinating challenge but is central to numerous advanced applications in quantum information science. Currently, all known approaches are extremely challenging although a few have led to experimental realisations with attenuated classical laser light. This has included cross-phase modulation with weak classical light in atomic ensembles and optical fibres, converting incident laser light into a non-classical stream of photon or Rydberg blockades as well as all-optical switches with attenuated classical light in various atomic systems. Here we report the observation of a nonlinear parametric interaction between two true single photons. Single photons are initially generated by heralding one photon from each of two independent spontaneous parametric downconversion sources. The two heralded single photons are subsequently combined in a nonlinear waveguide where they are converted into a single photon with a higher energy. Our approach highlights the potential for quantum nonlinear optics with integrated devices, and as the photons are at telecom wavelengths, it is well adapted to applications in quantum communication.Comment: 4 pages, 4 figure

    A new Manifestation of Atomic Parity Violation in Cesium: a Chiral Optical Gain induced by linearly polarized 6S-7S Excitation

    Full text link
    We have detected, by using stimulated emission, an Atomic Parity Violation (APV) in the form of a chiral optical gain of a cesium vapor on the 7S - 6P3/2_{3/2} transition,consecutive to linearly polarized 6S-7S excitation. We demonstrate the validity of this detection method of APV, by presenting a 9% accurate measurement of expected sign and magnitude. We underline several advantages of this entirely new approach in which the cylindrical symmetry of the set-up can be fully exploited. Future measurements at the percent level will provide an important cross-check of an existing more precise result obtained by a different method.Comment: 4 pages, 2 figure

    Role of the (Mn)superoxide dismutase of Enterococcus faecalis in the in vitro interaction with microglia

    Get PDF
    Enterococcus faecalis is a significant human pathogen worldwide and is responsible for severenosocomial and community-acquired infections. Although enterococcal meningitis is rare,mortality is considerable, reaching 21 %. Nevertheless, the pathogenetic mechanisms of thisinfection remain poorly understood, even though the ability of E. faecalis to avoid or survivephagocytic attack in vivo may be very important during the infection process. We previouslyshowed that the manganese-cofactored superoxide dismutase (MnSOD) SodA of E. faecalis wasimplicated in oxidative stress responses and, interestingly, in the survival within mouse peritonealmacrophages using an in vivo\u2013in vitro infection model. In the present study, we investigated therole of MnSOD in the interaction of E. faecalis with microglia, the brain-resident macrophages. Byusing an in vitro infection model, murine microglial cells were challenged in parallel with the wildtypestrain JH2-2 and its isogenic sodA deletion mutant. While both strains were phagocytosedby microglia efficiently and to a similar extent, the DsodA mutant was found to be significantlymore susceptible to microglial killing than JH2-2, as assessed by the antimicrobial protectionassay. In addition, a significantly higher percentage of acidic DsodA-containing phagosomes wasfound and these also underwent enhanced maturation as determined by the expression ofendolysosomal markers. In conclusion, these results show that the MnSOD of E. faecaliscontributes to survival of the bacterium in microglial cells by influencing their antimicrobial activity,and this could even be important for intracellular killing in neutrophils and thus for E. faecalispathogenesis

    Engineering integrated pure narrow-band photon sources

    Full text link
    Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.Comment: 13 pages, 7 figure

    Growth Interruption Effect on the Fabrication of GaAs Concentric Multiple Rings by Droplet Epitaxy

    Get PDF
    We present the molecular beam epitaxy fabrication and optical properties of complex GaAs nanostructures by droplet epitaxy: concentric triple quantum rings. A significant difference was found between the volumes of the original droplets and the final GaAs structures. By means of atomic force microscopy and photoluminescence spectroscopy, we found that a thin GaAs quantum well-like layer is developed all over the substrate during the growth interruption times, caused by the migration of Ga in a low As background

    Ballistic Electron Emission Microscopy on CoSi2{}_2/Si(111) interfaces: band structure induced atomic-scale resolution and role of localized surface states

    Get PDF
    Applying a Keldysh Green`s function method it is shown that hot electrons injected from a STM-tip into a CoSi2{}_2/Si(111) system form a highly focused beam due to the silicide band structure. This explains the atomic resolution obtained in recent Ballistic Electron Emission Microscopy (BEEM) experiments. Localized surface states in the (2×1)(2 \times 1)-reconstruction are found to be responsible for the also reported anticorrugation of the BEEM current. These results clearly demonstrate the importance of bulk and surface band structure effects for a detailed understanding of BEEM data.Comment: 5 pages, RevTex, 4 postscript figures, http://www.icmm.csic.es/Pandres/pedro.ht

    Interaction of Independent Single Photons based on Integrated Nonlinear Optics

    Full text link
    Photons are ideal carriers of quantum information, as they can be easily created and can travel long distances without being affected by decoherence. For this reason, they are well suited for quantum communication. However, the interaction between single photons is negligible under most circumstances. Realising such an interaction is not only fundamentally fascinating but holds great potential for emerging technologies. It has recently been shown that even weak optical nonlinearities between single photons can be used to perform important quantum communication tasks more efficiently than methods based on linear optics, which have fundamental limitations. Nonlinear optical effects at single photon levels in atomic media have been studied and demonstrated but these are neither flexible nor compatible with quantum communication as they impose restrictions on photons' wavelengths and bandwidths. Here we use a high efficiency nonlinear waveguide to observe the sum-frequency generation between a single photon and a single-photon level coherent state from two independent sources. The use of an integrated, room-temperature device and telecom wavelengths makes this approach to photon-photon interaction well adapted to long distance quantum communication, moving quantum nonlinear optics one step further towards complex quantum networks and future applications such as device independent quantum key distribution

    Self-Assembled Local Artificial Substrates of GaAs on Si Substrate

    Get PDF
    We propose a self-assembling procedure for the fabrication of GaAs islands by Droplet Epitaxy on silicon substrate. Controlling substrate temperature and amount of supplied gallium is possible to tune the base size of the islands from 70 up to 250 nm and the density from 107 to 109 cm−2. The islands show a standard deviation of base size distribution below 10% and their shape evolves changing the aspect ratio from 0.3 to 0.5 as size increases. Due to their characteristics, these islands are suitable to be used as local artificial substrates for the integration of III–V quantum nanostructures directly on silicon substrate
    corecore