791 research outputs found

    Non-equilibrium Bethe-Salpeter equation for transient photo-absorption spectroscopy

    Get PDF
    In this work we propose an accurate first-principle approach to calculate the transient photo--absorption spectrum measured in Pump\&\,Probe experiments. We formulate a condition of {\em adiabaticity} and thoroughly analyze the simplifications brought about by the fulfillment of this condition in the non--equilibrium Green's function (NEGF) framework. Starting from the Kadanoff-Baym equations we derive a non--equilibrium Bethe--Salpeter equation (BSE) for the response function that can be implemented in most of the already existing {\em ab--initio} codes. In addition, the {\em adiabatic} approximation is benchmarked against full NEGF simulations in simple model hamiltonians, even under extreme, nonadiabatic conditions where it is expected to fail. We find that the non--equilibrium BSE is very robust and captures important spectral features in a wide range of experimental configurations.Comment: 13 pages, 5 captioned figure

    First-principles approach to excitons in time-resolved and angle-resolved photoemission spectra

    Full text link
    We show that any {\em quasi-particle} or GW approximation to the self-energy does not capture excitonic features in time-resolved (TR) photoemission spectroscopy. In this work we put forward a first-principles approach and propose a feasible diagrammatic approximation to solve this problem. We also derive an alternative formula for the TR photocurrent which involves a single time-integral of the lesser Green's function. The diagrammatic approximation applies to the {\em relaxed} regime characterized by the presence of quasi-stationary excitons and vanishing polarization. The main distinctive feature of the theory is that the diagrams must be evaluated using {\em excited} Green's functions. As this is not standard the analytic derivation is presented in detail. The final result is an expression for the lesser Green's function in terms of quantities that can all be calculated {\em ab initio}. The validity of the proposed theory is illustrated in a one-dimensional model system with a direct gap. We discuss possible scenarios and highlight some universal features of the exciton peaks. Our results indicate that the exciton dispersion can be observed in TR {\em and} angle-resolved photoemission.Comment: 15 pages, 8 figure

    Optical properties of periodic systems within the current-current response framework: pitfalls and remedies

    Get PDF
    We compare the optical absorption of extended systems using the density-density and current-current linear response functions calculated within many-body perturbation theory. The two approaches are formally equivalent for a finite momentum q\mathbf{q} of the external perturbation. At q=0\mathbf{q}=\mathbf{0}, however, the equivalence is maintained only if a small qq expansion of the density-density response function is used. Moreover, in practical calculations this equivalence can be lost if one naively extends the strategies usually employed in the density-based approach to the current-based approach. Specifically we discuss the use of a smearing parameter or of the quasiparticle lifetimes to describe the finite width of the spectral peaks and the inclusion of electron-hole interaction. In those instances we show that the incorrect definition of the velocity operator and the violation of the conductivity sum rule introduce unphysical features in the optical absorption spectra of three paradigmatic systems: silicon (semiconductor), copper (metal) and lithium fluoride (insulator). We then demonstrate how to correctly introduce lifetime effects and electron-hole interactions within the current-based approach.Comment: 17 pages, 6 figure

    Fuzzy concepts defined via residuated maps

    Get PDF

    Stabilization of tetragonal/cubic phase in Fe doped Zirconia grown by atomic layer deposition

    Full text link
    Achieving high temperature ferromagnetism by doping transition metals thin films is seen as a viable approach to integrate spin-based elements in innovative spintronic devices. In this work we investigated the effect of Fe doping on structural properties of ZrO2 grown by atomic layer deposition (ALD) using Zr(TMHD)4 for Zr and Fe(TMHD)3 for Fe precursors and ozone as oxygen source. The temperature during the growth process was fixed at 350{\deg}C. The ALD process was tuned to obtain Fe doped ZrO2 films with uniform chemical composition, as seen by time of flight secondary ion mass spectrometry. The control of Fe content was effectively reached, by controlling the ALD precursor pulse ratio, as checked by X-ray photoemission spectroscopy (XPS) and spectroscopic ellipsometry. From XPS, Fe was found in Fe3+ chemical state, which maximizes the magnetization per atom. We also found, by grazing incidence X-ray diffraction, that the inclusion of Fe impurities in ZrO2 induces amorphization in thin ZrO2 films, while stabilizes the high temperature crystalline tetragonal/cubic phase after rapid thermal annealing at 600{\deg}C.Comment: 11 pages, 7 figures, 1 Tabl

    Albumin concentration in the Bowman's capsule: Multiphoton microscopy vs micropuncture technique

    Get PDF

    Spinorial formulation of the GW-BSE equations and spin properties of excitons in two-dimensional transition metal dichalcogenides

    Get PDF
    In many paradigmatic materials, such as transition metal dichalcogenides, the role played by the spin degrees of freedom is as important as the one played by the electron-electron interaction. Thus an accurate treatment of the two effects and of their interaction is necessary for an accurate and predictive study of the optical and electronic properties of these materials. Despite the fact that the GW-BSE approach correctly accounts for electronic correlations, the spin-orbit coupling effect is often neglected or treated perturbatively. Recently, spinorial formulations of GW-BSE have become available in different flavors in material-science codes. However, an accurate validation and comparison of different approaches is still missing. In this work, we go through the derivation of the noncollinear GW-BSE approach. The scheme is applied to transition metal dichalcogenides comparing the perturbative and full spinorial approaches. Our calculations reveal that dark-bright exciton splittings are generally improved when the spin-orbit coupling is included nonperturbatively. The exchange-driven intravalley mixing between the A and B excitons is found to play a role for Mo-based systems, being especially strong in the case of MoSe 2 . We finally compute the excitonic spin and use it to sharply analyze the spinorial properties of transition metal dichalcogenide excitonic states
    • …
    corecore