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In this work, we propose an accurate first-principles approach to calculate the transient photoabsorption
spectrum measured in pump-and-probe experiments. We formulate a condition of adiabaticity and thoroughly
analyze the simplifications brought about by the fulfillment of this condition in the nonequilibrium Green’s
function (NEGF) framework. Starting from the Kadanoff-Baym equations, we derive a nonequilibrium Bethe-
Salpeter equation (BSE) for the response function that can be implemented in most of the already existing ab initio
codes. In addition, the adiabatic approximation is benchmarked against full NEGF simulations in simple model
Hamiltonians, even under extreme, nonadiabatic conditions in which it is expected to fail. We find that the
nonequilibrium BSE is very robust and captures important spectral features in a wide range of experimental
configurations.
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I. INTRODUCTION

The impressive progress in ultrafast and ultrastrong laser-
pulse technology has paved the way to modern nonequilibrium
(NEQ) attosecond spectroscopies [1–5]. Unlike conventional
spectroscopies, the sample is driven away from equilibrium
by a strong laser pulse (the pump) before the photoabsorption
of a weaker (perturbative) probe field is measured. Pho-
toabsorption pump-and-probe (PP) spectroscopy experiments
are carried out using pump pulses with frequency in the
infrared-ultraviolet range and ultrashort probe pulses (down
to a few hundred attoseconds). By varying the delay between
the pump and probe pulses, one can monitor the excited-state
dynamics in a wide energy range.

For samples of linear dimension (in the case of extended
systems, this is the dimension of the primitive cell) smaller
than the wavelength of the incident light, the measured signal
can be calculated theoretically from the NEQ density response
function [6–12] χ (dipole approximation) or, equivalently,
from equilibrium dipole correlators of order larger than 2
[13–18]. In the present paper, we follow the first path.

At equilibrium, χ (ω) can be used to construct the dipole-
dipole correlation function α(ω) in an isolated system or the
dielectric function ε(ω) in extended systems. For correlated
systems, the calculation of χ is, in general, a difficult task, and
one has to resort to approximations. The most suitable many-
body scheme to implement depends on the sample. For atomic
or small molecular samples, the configuration interaction
(CI) scheme consists in expanding the many-body state in
Slater determinants to obtain eigenstates and eigenvalues.
Subsequently, the oscillator strengths are computed and used
to construct χ from a Lehmann representation. For molecules
with tens of nuclei or more, as well as for crystals, the number
of CI configurations is too large for present-day computational
capabilities, and alternative (statistical in nature) approaches
are required. One such approach is many-body perturbation
theory (MBPT). In MBPT, the two-particle electron-hole
propagator L satisfies a diagrammatic equation known as the

Bethe-Salpeter equation (BSE), and χ is constructed from a
space-time contraction of the arguments of L [19,20]. The
BSE has been successfully applied to study photoabsorption
spectroscopy of systems ranging from small molecules to bulk
metals and insulators. In this context, the BSE is solved at the
GW level with a statically screened interaction [19,21–26].

Another convenient alternative to CI (and MBPT) is the
linear response (LR) time-dependent density-functional theory
(TDDFT). [27,28] Although TDDFT is in principle exact
[29,30], the available functionals for actual calculations are
based on the adiabatic local density approximation (ALDA)
[31–33]. It is well known that ALDA functionals fail in cap-
turing double excitations [34,35], charge transfer excitations
[36–38], or the Coulomb blockade phenomenon [39,40] in
equilibrium systems. For extended systems, ALDA performs
poorly in the description of the response function as it misses
the long-range electron-hole interaction needed to describe
excitons [22,41]. Therefore, the applicability of LR-TDDFT
is at present restricted to systems in which the direct electron-
hole interaction is not too strong, and hence the spectrum is
dominated by single particle-hole excitations.

Similarly to the equilibrium case, the PP photoabsorption
spectrum is described by the NEQ response function χ (t,t ′).
In this work, we identify a set of constraints between
characteristic times that allows us to rewrite χ (t,t ′) as a
function of the delay τ between the pump and probe pulses
and of the time difference t − t ′, i.e., χ (t,t ′) = χτ (t − t ′).
Henceforth, we will refer to this approximation as the adiabatic
approximation. The mathematical rigorous definition of the
adiabatic approximation as well as its testing in a PP setup is
the central objective of the present paper.

The adiabatic response function can be computed at differ-
ent levels of accuracy depending on the theoretical scheme
used. In the CI approach, the time-dependent expansion
coefficients are used to calculate the time-dependent product
of oscillator strengths, and subsequently these products are
inserted into a Lehmann-like representation of the NEQ
adiabatic χτ (ω) to yield a PP spectrum with a time-dependent
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modulation of the peak intensity [8,10,42,43]. Within MBPT,
instead, we show that the equation of motion for χτ (t − t ′)
can be rewritten as a BSE. The main difference with the
equilibrium BSE is that the equilibrium single-particle density
matrix is replaced by its time-dependent value as, for instance,
obtained from the solution of a Boltzmann-like equation [44].
The NEQ adiabatic χτ (ω) could also be computed within
LR-TDDFT. However, it is reasonable to expect that the
performance of ALDA functionals does not improve in NEQ
situations.

The structure of the paper is as follows. Section II presents
a brief self-contained introduction to the link between the
macroscopic observable and the microscopic theory. We
discuss both the real-time (Sec. II A) and the response
function (Sec. II B) representations. Here we also identify a
set of characteristic times in terms of which the condition
of adiabaticity is formulated. The MBPT approach to χ is
developed in Sec. III where we introduce the nonequilibrium
Green’s functions (NEGF) [20,44–48]. The NEGF approach
is computationally more expensive than TDDFT, but it has the
advantage of including dynamical correlations in a nonpertur-
bative diagrammatic fashion. To reduce the numerical cost,
we implement, in Sec. III A, NEGF within the generalized
Kadanoff-Baym ansatz [44,49] (GKBA) and then derive the
linear response equations in Sec. III B. Except for the GKBA,
no other approximations are made at this stage. The complexity
of the problem is further reduced in Sec. IV. Here we exploit
the adiabatic approximation and obtain the central result of
this work, namely a NEQ-BSE. We examine differences and
analogies with the more standard equilibrium BSE and discuss
the possibility of converting the NEQ-BSE into a Dyson-like
equation in Sec. IV A. Finally, in Sec. V we illustrate the theory
in a model system by benchmarking the performance of the
NEQ-BSE against full NEGF calculations. A summary of the
paper and concluding remarks are presented in Sec. VI.

II. THE TRANSIENT PHOTOABSORPTION SPECTRUM

In this section, we relate the macroscopic quantity measured
in a PP experiment to the microscopic quantum-mechanical
properties of the probed sample. This link establishes a
connection between the experimental signal and the solution
of the complex quantum kinetic equation for the one-particle
density matrix.

A. A real-time approach

In a PP experiment, the transient photoabsorption spectrum
of a system driven out of equilibrium by a pump field is
measured. The theoretical description of the driven system is
achieved by evolving the many-body state in the simultaneous
presence of the pump field and of a weak probe field. Let E
and e be the electric pump and the probe field, respectively.
We define the different terms constituting the many-body
Hamiltonian Ĥ (t) according to

Ĥ 0 = T̂ + V̂N , (1a)

Ĥ eq = Ĥ 0 + V̂ee, (1b)

Ĥ neq(t) = Ĥ eq + E(t) · d̂, (1c)

Ĥ (t) = Ĥ neq(t) + e(t) · d̂. (1d)

Here T̂ is the kinetic energy operator, V̂N the external
static potential of the nuclei, and V̂ee is the electron-electron
interaction. Therefore, Ĥ eq is the Hamiltonian of the unper-
turbed system. The inclusion of other interactions, e.g., the
electron-phonon interaction, does not modify the derivation
and the results of the present section. The terms E(t) · d̂ and
e(t) · d̂ describe the coupling of the electrons with the pump
and probe fields in the dipole approximation, d̂ being the
dipole operator (see below for its mathematical definition).
For simplicity, we consider linearly polarized pump and probe
fields:

E(t) = ηP E(t), (2a)

e(t) = ηpe(t), (2b)

with ηP and ηp the polarization vectors. The generalization to
other kind of polarizations is straightforward.

We work in the second quantization formalism and intro-
duce a suitable single-particle basis with orthonormal wave
functions {ϕi(r)}. Then the creation and annihilation field
operators ψ̂†(r) and ψ̂(r) for a particle at position r in space are
expanded according to ψ̂(r) = ∑

i ϕi(r)ĉi . The one-particle
density-matrix operator takes the form

ρ̂(r,r′) = ψ̂†(r)ψ̂(r′) =
∑
ij

ϕ∗
i (r)ϕj (r′)ρ̂j i , (3)

with ρ̂j i = ĉ
†
i ĉj . Similarly, the dipole operator projected along

the probe field in the {ϕi(r)} basis reads

d̂ = ηp · d̂ ≡
∫

dr (ηp · r)ρ̂(r,r) = dij ρ̂ji , (4)

with dij = ∫
dr ϕ∗

i (r)(ηp · r)ϕj (r) the dipole matrix elements.
In Eq. (4) and in the remainder of the paper, we use the Einstein
convention that repeated indices are summed over. The time-
dependent expectation value of the dipole operator is given
by

d(t) = 〈
(t)|d̂|
(t)〉 = dij 〈
(t)|ρ̂j i |
(t)〉, (5)

where |
(t)〉 is the state of the system at time t .
Without any loss of generality, we assume that the switch-on

time of the pump and probe fields is larger than zero; hence
the system is in the ground state |
g〉 at time t = 0. Let ÛH (t)
be the unitary evolution operator corresponding to a system
with dynamics Ĥ ,

ÛH (t) ≡ T e−i
∫ t

0 dt̄ [Ĥ (t̄)], t > 0. (6)

The time-dependent matrix elements of the one-particle
density matrix in the presence of both the pump and probe
fields are therefore given by

ρji(t) ≡ 〈
(t)|ρ̂j i |
(t)〉 = 〈
g| Û †
H (t)ρ̂j i ÛH (t)|
g〉. (7)

Replacing Ĥ with Ĥ neq in Eq. (6), we have the evolution
operator in the presence of the pump only, ÛH neq (t). To simplify
the notation, we put a tilde on time-dependent expectation
values obtained with a probe-free propagation. Thus

ρ̃j i(t) = 〈
g| Û †
H neq (t)ρ̂j i ÛH neq (t)|
g〉, (8)

and hence d̃(t) = dij ρ̃ji(t).
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For optically thin samples [50], the transmitted probe
field e′(t) = ηpe′(t) is related to the probe-induced variation
dp(t) ≡ d(t) − d̃(t) of the dipole moment by [12]

e′(t) = e(t) + 2π

Sc

d

dt
dp(t), (9)

where S is the cross section of the sample (assumed to be
smaller than the cross section of the laser beam).

The transmitted probe field is typically split in two halves
and then merged back by a spectrometer, thus generating an
electric field 1

2 [e′(t) + e′(t − δ)] with a tunable delay δ � 0. In
a PP experiment, the integrated intensity of this field, i.e., the
total absorbed energy per unit area, is measured as a function
of δ:

I ′(δ) = c

4π

∫ ∞

−∞
dt

∣∣∣∣e′(t) + e′(t − δ)

2

∣∣∣∣
2

. (10)

The resulting function I ′(δ) is then cosine-transformed,

I′(ω) =
∫ ∞

0
dδ I ′(δ) cos(ωδ), (11)

to gain information about the absorption energies of the
system. Although the probe pulse has a finite duration, the
time integral in Eq. (10) goes from minus to plus infinity since
the cosine transform requires I ′(δ) for all delays δ � 0.

Performing an analogous spectral decomposition of e(t),
we get the intensity I(ω) of the incident probe field. The
photoabsorption spectrum S(ω) is therefore given by the
difference

S(ω)

S
= I(ω) − I′(ω). (12)

Using Eq. (9), it is straightforward to show that [12]

S(ω) = −2ω Im[e(ω)dp(ω)] − 2π

Sc
|ωdp(ω)|2, (13)

where e(ω) and dp(ω) are the Fourier transform of the time-
dependent probe field e(t) and probe-induced dipole moment
dp(t) ≡ d(t) − d̃(t), respectively. This relation expresses the
aforementioned link between the macroscopic intensity of
the transmitted probe field measured in a PP experiment and
the microscopic dipole moment.

In photoabsorption experiments of equilibrium systems (no
pump), the induced electric field [second term on the right-
hand side of Eq. (9)] is typically much smaller than the incident
probe, and the quadratic term in the dipole moment appearing
in S(ω) can be safely discarded. Moreover, dp(ω) = α(ω)e(ω)
with α(ω) ≡ dijχji

kl

(ω)dlk having the property that Im[α(ω)] ≶

0 for ω ≷ 0 (see the next section), and therefore the ratio
S(ω)/|e(ω)|2 is positive and independent of the shape of the
probe. On the contrary, the photoabsorption spectrum of a
pump-driven system is not an intrinsic property of the sample
since dp(ω), although still linear in e, depends on e(ω′) at
all possible frequencies ω′. Translating this statement from
frequencies to times, the spectrum depends on the shape of the
probe and on the NEQ state of the system at the time the probe
pulse enters the sample (hence on the delay between the pump
and probe pulses). Furthermore, there might be frequencies for

which the spectrum S(ω) is negative due to a dominance of
the stimulated emission over absorption.

For a fixed shape of the pump and probe pulse, the main
interest in PP experiments is to study the evolution of the
spectrum as the delay τ between the two pulses is varied.
Assuming that the quadratic term in dp, see Eq. (13), is small
and taking into account that dp(ω) = dij [ρji(ω) − ρ̃j i(ω)], the
resulting spectrum reads

Sτ (ω) = −2ω Im[e∗(ω)dij δρji(ω)], (14)

where we define δρ = ρ − ρ̃. In Eq. (14), we explicitly added
to S a dependence on τ since the probe field as well as the time-
dependent density matrix depends on the pump-probe delay.
This dependence is, in general, rather complex and difficult to
interpret. As we shall see, the calculation of the spectrum as
well as its physical interpretation are greatly simplified if the
adiabatic approximation is made.

B. A response-function representation: The adiabatic condition

Equation (14) can be rewritten in a different way using
linear response theory out of equilibrium. Let us introduce the
(retarded) NEQ response function

χji

lk

(t,t ′) = −iθ (t−t ′)〈
g|[ĉ†iH (t)ĉjH (t),ĉ†kH (t ′)ĉlH (t ′)]|
g〉,
(15)

where ĉiH (t) ≡ Û †
H neq (t)ĉi ÛH neq (t) are fermion operators in the

Heisenberg picture with respect to the probe-free Hamiltonian
Ĥ neq. To first order in e, the probe-induced variation of the
dipole moment reads

dp(t) = dij

∫
dt ′χji

lk

(t,t ′)dkl e(t ′)

=
∫

dt ′[d ◦ χ (t,t ′) ◦ d]e(t ′). (16)

In Eq. (16), we introduced a short-hand notation for the
contraction of tensors of different rank. Below we define the
four types of contractions, which include the one in Eq. (16),
that we use in the paper:

(M ◦ V )pq ≡ Mpq

mn

Vnm, (17a)

(T ◦ M ◦ V ) ≡ TpqMqp

mn

Vnm, (17b)

(M ◦ N )mn

rs

≡ Mmn

pq

Nqp

rs

, (17c)

[N,V ]mn

pq

= −[V,N ]mn

pq

≡ Nmi

pq

Vin − VmiNin

pq

. (17d)

The rank of the tensors will be clear from the context. Notice
that Eq. (17d) has the same structure of a commutator since
the lower indices are fixed. Taking into account Eq. (14), we
clearly see from Eq. (16) the relation between the PP spectrum
and the NEQ response function; we can also appreciate the
complex time dependence introduced by the pump field. In
fact, in equilibrium (no pump) the response function reduces
to a function of (t − t ′) due to the invariance under time
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translations. Using this invariance, the linear response relation
Eq. (16) in Fourier space reads dp(ω) = α(ω)e(ω) with α =
(d ◦ χ ◦ d), and the ratio S(ω)/|e(ω)|2 becomes independent
of the probe. As already discussed in the introduction, the
equilibrium response function can be calculated by solving
the BSE.

In the time domain, the equation for the electron-hole
propagator L (χ follows from a space-time contraction of
L) is valid out-of-equilibrium too. The most convenient
and compact way to write the nonequilibrium equation for
L is through the many-particle Green’s functions on the
Keldysh contour [20]. Let us introduce the short-hand notation
1 = (i1,z1), 2 = (i2,z2), etc. for the orbital and contour-time
coordinates. Then, the one- and two-particle Keldysh Green’s
functions are defined according to

G(1; 2) ≡ 1

i
〈T {ĉi1H (z1)ĉ†i2H

(z2)}〉, (18)

G2(1,2; 3,4) ≡ 1

i

〈
T

{
ĉi1H (z1)ĉi2H (z2)ĉ†i4H

(z4)ĉ†i3H
(z3)

}〉
,

(19)

where T is the contour ordering operator and the average
is over the ground state 
g . The Keldysh electron-hole
propagator L then reads

L(1,2; 3,4) = −G2(1,2; 3,4) + G(1; 3)G(2; 4), (20)

and it satisfies the four-point equation

L(1,2; 3,4) = G(1; 4)G(2; 3) −
∫

G(1; 1′)G(3′; 3)

×K(1′,2′; 3′,4′)L(4′,2; 2′,4), (21)

with the four-point kernel

K(1,2; 3,4) = δ�(1; 3)/δG(4; 2), (22)

given by the functional derivative of the self-energy with
respect to the Green’s function. In Eq. (21), the integral is
over all primed variables and it implies a sum over orbital
indices and an integral over the contour times. If we could
solve Eq. (21) for L, then the Keldysh response function would
follow from [20],

χji

lk

(z1,z2) = −iL(jz1,lz2; kz+
2 ,iz+

1 ), (23)

where z+ indicates a contour time infinitesimally later than z.
The NEQ (retarded) response function in Eq. (15) would then
read

χji

lk

(t ; t ′) = θ (t − t ′)
[
χji

lk

(t+; t ′−) − χji

lk

(t−; t ′+)
]
, (24)

where z = t− (z = t+) is the contour time on the backward
(forward) branch of the Keldysh contour.

The numerical solution of Eq. (21) is essentially impossible
for present-day computational capabilities. The problem is
therefore to find a simple but still accurate approach to
calculate the NEQ χ within MBPT. For this purpose, we will
extend the equilibrium BSE to NEQ situations relevant to PP

experiments and provide a sound interpretation of the two-time
dependence. In the following, we refer to this equation as the
NEQ-BSE.

We begin the discussion by introducing two fundamental
characteristic times that support the adiabatic approximation:
the key idea is that a NEQ-BSE is meaningful whenever
the system is substantially frozen in a NEQ configuration
during the measurement process. The characteristic times are
as follows:

(i) The time scale TP of the electron dynamics induced by
the pump. If �t 	 TP , then ρ̃(t + �t) ≈ ρ̃(t).

(ii) The lifetime τp of the dressed probe pulse, which is the
duration of the measurement process too.

We can formulate the condition of applicability of the
adiabatic approximation as

TP � τp. (25)

Equation (25) expresses the physical condition that the probe-
free ρ̃(t) has to vary on a time scale (TP ) much longer than
the duration (τp) of the dressed probe. Of course for τp to be
smaller than typical electronic time scales, there should exist
decay channels faster than the radiative decay. This is the case
of solid slabs as well as of thick atomic or molecular gases.
The following analysis applies to this class of systems.

We identify two different situations in which the condition
in Eq. (25) is fulfilled. (i) If the pump itself varies on a
time scale TP � τp, then Eq. (25) is always fulfilled since
the pump-induced dynamics cannot be faster than TP . In this
case, the adiabatic approximation, and hence the NEQ-BSE,
can be used to describe the transient spectrum for any delay τ

between the pump and probe fields. (ii) In general, however,
the pump is a pulse of duration �P (see Fig. 1), no longer than
a few hundred femtoseconds capable of inducing arbitrary fast
processes. During the action of the pump, the level occupations
change and the system polarizes. Shortly after �P , we have
a transient period characterized by a dephasing-driven drop
of the pump-induced polarization, we denote by τpol the
polarization lifetime in this nonequilibrium situation, and by a
stabilization of the level occupations at some nonequilibrium
value, we denote by τcarr the characteristic time for the
occupations to stabilize; see again Fig. 1. Thus, after a time
τmax = max(τpol,τcarr), typically τpol < τcarr, we may say that
the system is in a quasistationary state with carriers in some
excited levels. In this quasistationary regime, the time to relax
back to the ground state is dictated by scattering processes
(electron-electron, electron-phonon, and electron-photon) and
can be of the order of picoseconds. If we denote by τscatt

this relaxation time scale, then we have TP = τscatt. Suppose
now to probe the system in this quasistationary state with a
pulse e(t) of duration �p. The probe induces a polarization
dp(t) that dresses the bare e(t) and, in general, has a finite
lifetime τ̃p. Hence the duration of the dressed probe field,
which coincides with the duration of the measurement process,
is τp = �p + τ̃p. In this regime, the condition in Eq. (25) is
fulfilled provided that τp is shorter than the relaxation time
τscatt. This is often the case as τp is typically in the femtosecond
range.

In Fig. 1, we represent the dressed probe field with
oscillations of frequency ωp. Although the characteristic
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FIG. 1. (Color online) Illustration of the characteristic times described in the main text: TP is the time scale of the electron dynamics
induced by the pump, τpol is the dephasing time of the pump-induced polarization, τcarr is the stabilization time of the occupations, τscatt is the
time to relax back to the equilibrium state, and τp is the lifetime of the dressed probe field. We also display the delay τ between pump and
probe.

frequency ωp can be any, it is clear that it is only for

τp � 2π

ωp

, (26)

that the Fourier transform of the probe-induced dipole has a
well-defined structure in ωp. This implies that the lifetime τp

also sets a lower limit to the frequency resolution of a transient
spectroscopy experiment.

When the inequality of Eq. (25) is satisfied, the probe sees
a NEQ frozen system. If we take t = 0 as the time at which
the pump is on, then the probe acts at t = τ and for times
(t,t ′) ∈ [τ − τp,τ + τp] the response function

χ (t,t ′) ≈ χτ (t − t ′), (27)

depends only on (t − t ′) to a large extent. We emphasize that in
Eq. (27) the delay τ defines the boundary of the (t,t ′) domain
and it is not the center-of-mass time or something similar.
Therefore, Eq. (27) represents a nontrivial statement since it
is not possible to reconstruct (t,t ′) from τ and t − t ′. We will
provide a more precise definition of χτ (t − t ′) in the next
section. For the time being, we observe that whenever we can
make the adiabatic approximation of Eq. (27), the transient
photoabsorption spectrum of Eq. (14) can be written as

Sτ (ω) = −2ω |e(ω)|2 Im[d ◦ χτ (ω) ◦ d]. (28)

Consequently, the ratio Sτ (ω)/|e(ω)|2 becomes independent
of the probe and can be interpreted as an intrinsic property
of the nonequilibrium system; see again the discussion below
Eq. (13).

As a very general remark, we notice that when the system
is probed after the pump (no overlap between the pulses), the
probe-induced dipole moment oscillates at frequencies �αβ =
Eα − Eβ , where Eα,Eβ are eigenenergies of Ĥ eq; see Eqs. (15)
and (16) [12,51]. Furthermore, the amplitude of the oscillations
depends on the delay τ [12]. Therefore, PP spectra are richer
than equilibrium spectra where the probe-induced dipole
moment can oscillate only at frequencies �β = Eg − Eβ ,
with Eg the ground-state energy, with constant amplitudes.
The extra transitions are usually referred to as photoinduced
absorption and stimulated emission.

To summarize, Eqs. (14) and (28) represent two different
ways of calculating the transient photoabsorption spectrum.

We could either perform a time propagation with both the
pump and the probe, a second time propagation with only the
pump and then extract the probe-induced dipole moment δd,
or we can evaluate the response function χτ from a NEQ-BSE.
The latter approach is developed in the next section.

III. A NONEQUILIBRIUM GREEN’S-FUNCTION
APPROACH TO TRANSIENT ABSORPTION

In the preceding section, we have introduced the theoretical
description of transient absorption experiments with two possi-
ble approaches. The first, which is exact, is based on Eq. (14)
and the second, which uses the adiabatic approximation, is
based on Eq. (28). However, these equations assume that it is
ideally possible to compute the exact time-dependent density
matrix or the exact adiabatic response function. This is not
doable in practice and one has to resort to approximations. In
the following, we show how to use NEGF theory to obtain a
MBPT equation for dp(t). In the next section, we use this result
to generate an equation for the NEQ response function χ (t,t ′),
and subsequently we make the adiabatic approximation to
derive the NEQ-BSE for χτ (t − t ′).

In the MBPT approach, the description in terms of
the many-body Hamiltonian containing the electron-electron
interaction is replaced by a description in terms of the
one-particle Hamiltonian and the many-body self-energy.
For simplicity in this work we consider nonmagnetic (spin-
compensated) systems; the extension to magnetic (or even
superconducting) systems is straightforward. We thus define

h0 =
[
−∇2

2
+ VN (r)

]
, (29a)

heq = h0 + �0, (29b)

h̃t (t) = heq + ��̃t
s + E(t) · d, (29c)

ht (t) = h̃t (t) + δ�t
s + e(t) · d. (29d)

We have introduced here the t superscript to indicate a
quantity whose time dependence is given by the implicit
dependence on the instantaneous density matrix. This means
that for a time-dependent functional f [ρ(t)](t ′) or for a scalar
f [ρ(t)] depending exclusively on the density matrix at time t ,
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we have

f t ≡ f [ρ(t)], (30)

f t (t ′) ≡ f [ρ(t)](t ′). (31)

Furthermore, to indicate that the function is calculated at
the probe-free density matrix ρ̃, we put a tilde symbol on
the function. Thus f̃ t ≡ f [ρ̃(t)] and f̃ t (t ′) ≡ f [ρ̃(t)](t ′).
Let us define the three different self-energies appearing in
Eqs. (29). The self-energy �0 = �s[ρeq] is the static part
of the equilibrium many-body self-energy and it is therefore
calculated at the equilibrium density matrix ρeq. The self-
energies ��̃t

s and δ�t
s are the variations due to a change in ρ

induced by the pump and the probe, respectively,

��̃t
s ≡ �s[ρ̃(t)] − �s[ρ

eq] = �̃t
s − �0, (32a)

δ�t
s ≡ �s[ρ(t)] − �s[ρ̃(t)] = �t

s − �̃t
s . (32b)

In general, �s is the Hartree-Fock (HF) plus static correla-
tion self-energy. It plays a crucial role as it renormalizes the
single-particle level energies and introduces correlation effects
(such as electron-hole attraction) also in the polarization
function. The different possible approximations to �s reflect
the different kind of physics introduced in the dynamics:

(i) A mean-field potential that mimics the correlation
effects. An example is DFT where �t

s is local in space and
given by the sum of the Hartree and exchange-correlation
potential.

(ii) HF self-energy. In this case no correlation is included.
The HF self-energy reads �t

s = V ◦ ρ(t), with the four-
index tensor V ij

mn

= 2vimnj − vimjn and vimnj the two-electron

Coulomb integrals.
(iii) Hartree plus a Coulomb hole and screened ex-

change (COHSEX) self-energy. In this case, correlation is
included using a linear response approximation but dynamical
effects are neglected. The COHSEX self-energy reads �t

s =
V t ◦ ρ + Wt

C with V t
ij

mn

= 2vimnj − vt
imjn and Wt

C the Coulomb

hole potential. In V t the screened exchange interaction reads

vt (r,r′) ≡
∫

dr ε−1
RPA[ρ(t)](r,r)v(r − r′). (33)

In all cases, the static self-energy is a time-local functional
of the density matrix.

A. Real-time dynamics (I): The generalized
Kadanoff-Baym ansatz

In NEGF theory, the key quantities are the lesser, G<(t,t ′),
and greater, G>(t,t ′), Green’s functions. These functions are
defined according to

G<
ij (t,t ′) = i〈ĉ†jH (t ′)ĉiH (t)〉, (34a)

G>
ij (t,t ′) = −i〈ĉiH (t)ĉ†jH (t ′)〉. (34b)

It is easy to verify that the one-particle density matrix
is given by the lesser Green’s function at equal times,
ρ(t) ≡ −iG<(t,t). The functions G≶ satisfy a set of coupled
equations known as the Kadanoff-Baym equations (KBE)

[20,44–48,52,53]. The KBE are integrodifferential equations
with a self-energy kernel depending on both G< and G>. It
is possible to collapse the KBE into a single equation for the
one-particle density matrix by making the so called generalized
Kadanoff-Baym ansatz (GKBA) [49]. The corresponding
equation for ρ reads

d

dt
ρ(t) + i[ht (t),ρ(t)] = −I (t), (35)

where ht (t) is defined in Eq. (29).
The collision integral I (t) = I [ρ](t) on the right-hand side

of Eq. (35), in contrast with the static self-energies previously
discussed, is nonlocal in time (unless specific approximations
are made), i.e., it depends on the full history of ρ. The
functional form is uniquely determined through the GKBA
once an approximation for the correlation self-energy, �c, is
made. Let us show how to obtain I starting from its exact KBE
expression and then making the GKBA. From the KBE, we
have

I (t) =
∫

dt̄
[
�<

c (t,t̄)G(a)(t̄ ,t) + �(r)
c (t,t̄)G<(t̄ ,t)

] + H.c.,

(36)

with �c a functional of G< and G>. The functional form of �c

must be consistent with the choice of �s , i.e., �c = � − �s

with � the full many-body self-energy. Retarded/advanced
functions carry a superscript (r)/(a) and are defined in terms of
the lesser and greater functions according to

X(r)(t,t ′) = [X(a)(t ′,t)]†

= θ (t − t ′)[X>(t,t ′) − X<(t,t ′)], (37)

where X can be G, �c, or any other two-time correlator. The
GKBA is an ansatz for G≶ which turns �c, and hence the
collision integral, into a functional of ρ and G(r)/(a):

G<(t,t ′) = −G(r)(t,t ′)ρ(t ′) + ρ(t)G(a)(t,t ′), (38a)

G>(t,t ′) = +G(r)(t,t ′)ρ̄(t ′) − ρ̄(t)G(a)(t,t ′), (38b)

where ρ̄ = 1 − ρ. To transform I (t) into a functional of the
density matrix, and hence to close Eq. (35), one needs to
express the propagator G(r) in terms of ρ. Depending on the
system, there exist optimal approximations to the propagator,
the most common one being the quasiparticle (QP) propagator

G(r)(t,t ′) = −iθ (t − t ′)T e−i
∫ t

t ′ dt̄ hqp(t̄). (39)

For (small) finite systems, the choice hqp = heq (usually heq is
the HF single-particle Hamiltonian) is a good choice [54]. For
extended systems, however, the lack of damping in heq prevents
the system from relaxing. In these cases, the propagator is
typically corrected by adding non-Hermitian terms given by
the quasiparticle lifetimes hqp = heq + iγ [55–61].

B. Real-time dynamics (II): The linear regime

If the probe is a weak perturbation, we can work within a
linear response approach. Then δ�t

s is of first order in e and
the collision integral can be expanded as

I (t) ≈ Ĩ (t) + δI (t). (40)
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Inserting Eq. (40) into Eq. (35) and equating terms of the same
order in the probe field, we get two equations, one for ρ̃ and
another for δρ (omitting the explicit time dependence from the
various quantities):

d

dt
ρ̃ + i[h̃t ,ρ̃] = −Ĩ , (41a)

d

dt
δρ + i[h̃t ,δρ] + [

δ�t
s + e · d,ρ̃

] = −δI. (41b)

As we are in the linear response regime, we can rewrite δ�t
s

and δI in terms of kernel functions of the probe-free density
matrix ρ̃. The notation introduced now proves useful because
it highlights the dependence on ρ̃ and δρ:

δ�t
s = K̃t

s ◦ δρ(t), (42a)

δI (t) =
∫

dt̄ K̃c(t,t̄) ◦ δρ(t̄). (42b)

The static kernel K̃t
s depends only on the instantaneous

ρ̃(t) whereas the correlation kernel K̃c depends on the full
history of the probe-free density matrix. Furthermore, K̃c(t,t̄)
vanishes for t̄ > t since I (t) depends on ρ(t̄) only for t̄ < t , as
it follows directly from Eq. (36) and the GKBA in Eqs. (38).
With Eqs. (42), we can rewrite Eq. (41b) as

d

dt
δρ + i[h̃t ,δρ] + i

[
K̃t

s ◦ δρ + e · d,ρ̃
]

= −
∫

dt̄ K̃c(t,t̄) ◦ δρ(t̄). (43)

Equation (43) is the many-body equation for the calculation
of the probe-induced change of the density matrix. It is worth
observing that the occurrence of a two-times kernel in Eq. (43)
is a direct consequence of the GKBA, which transforms the
collision integral into a functional of the one-time quantity
ρ(t). Without the GKBA, the correlation self-energy is a
functional of the two-times Green’s function, and the equation
for δρ would contain the four-times kernel appearing in
Eq. (21) for the electron-hole propagator L.

In the next section, we combine Eq. (43) with the condition
of adiabaticity in Eq. (25) to derive a NEQ-BSE.

IV. NONEQUILIBRIUM BETHE-SALPETER EQUATION

The next step in the derivation of a BSE in the presence of
the pump field is to transform Eq. (43) into an equation for the
response function. Toward that end, we use the relation

χji

lk

(t,t ′) = δρji(t)

δukl(t ′)
, (44)

with ukl(t) = e(t) · dkl . Taking the functional derivative of
Eq. (43) with respect to u(t ′), we find

d

dt
χ (t,t ′) + i[h̃t (t),χ (t,t ′)] + i

[
K̃t

s ◦ χ (t,t ′) + 1δ(t − t ′),ρ̃(t)
]

= −
∫

dt̄K̃c(t,t̄) ◦ χ (t̄ ,t ′), (45)

where we introduced the four-index tensor 1ji

kl

= δjlδik . At

zero pump, this equation reduces to the equilibrium BSE,

d

dt
χ eq(t − t ′) + i[heq,χ eq(t − t ′)]

+ i
[
Keq

s ◦ χ eq(t − t ′) + 1δ(t − t ′),ρeq
]

= −
∫

dt̄ Keq
c (t − t̄) ◦ χ eq(t̄ − t ′). (46)

The differences between Eqs. (45) and (46) are as follows:
(i) In the equilibrium limit all quantities depend on the

relative time coordinate only.
(ii) ρeq is time-independent while ρ̃(t) is time-dependent.
(iii) The static equilibrium Hamiltonian heq is replaced by

the time-dependent h̃t (t).
(iv) The kernels K̃t

s and K̃c(t,t̄) are evaluated at the pump-
driven time-dependent density matrix ρ̃ whereas the kernels
K

eq
s and K

eq
c (t − t̄) are evaluated at the static equilibrium

density matrix ρeq.
Due to these points, it is not possible to reduce Eq. (45) to

an algebraic equation for χ (t,t ′), as is commonly done in state-
of-the-art equilibrium calculations after Fourier transforming
with respect to the time difference t − t ′. In Eq. (45), χ (t,t ′)
is not a function of t − t ′ and, furthermore, the dependence on
t appears both implicitly and explicitly in h̃t , K̃t

s , K̃c, and ρ̃.
Analytical progress can be made provided that the adiabatic

condition, see Eq. (25), is fulfilled. We recall that in this
approximation the pump-driven density matrix ρ̃(t) varies
slowly over the lifetime τp of the dressed probe. Thus for
t ∈ [τ − τp,τ + τp] we have

ρ̃(t) ≈ ρ̃(τ ). (47)

In the same time window, E(t) ≈ E(τ ) and hence Eq. (47)
implies that

h̃t (t) ≈ h̃τ (τ ), (48)

K̃t
s ≈ K̃τ

s . (49)

This is a direct consequence of the fact that the functionals
h̃t (t) and K̃t

s are time-local functionals of ρ̃(t).
Another simplification brought about by the adiabatic

condition is that for times t,t ′ ∈ [τ − τp,τ + τp] the retarded
Green’s function, see Eq. (39), can be approximated as

G(r)(t,t ′) ≈ −iθ (t − t ′) exp[−ih̃qp(τ )(t − t ′)]. (50)

Therefore, the adiabatic retarded Green’s function is invariant
under time translations and it is a local functional of the probe-
free density matrix at time τ . The crucial consequence of this
fact is that the correlation kernel too becomes a function of the
time difference only and a time-local functional of ρ̃(τ ):

K̃c(t,t ′) � K̃τ
c (t − t ′). (51)

Taking into account Eqs. (47)–(51), we see that the solution of
Eq. (45) is a response function χ (t,t ′) � χτ (t − t ′) depending
on the delay τ [through its implicit dependence on ρ̃(τ )] and
on the time difference t − t ′.

In the adiabatic approximation, Eq. (45) can be conve-
niently Fourier-transformed to yield an algebraic equation for
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the frequency-dependent response function,

− iωχτ (ω) + i[h̃τ (τ ),χτ (ω)] + i
[
K̃τ

s ◦ χτ (ω) + 1,ρ̃(τ )
]

= −K̃τ
c (ω) ◦ χτ (ω). (52)

This is the aforementioned NEQ-BSE and the main result
of the present work. We emphasize that χτ is the response
function of the finite system. In the case of extended systems,
χτ is equivalent to the macroscopic response function obtained
from a supercell calculation where the spatial long-range
component of the induced Hartree field (corresponding to its
q → 0 Fourier component) has been removed [22].

The solution of Eq. (52) requires a preliminary calculation
of the one-particle density matrix ρ̃(t). In the next subsection,
we show how to rewrite the NEQ-BSE as a Dyson equation
for χτ . The NEQ Dyson equation is then compared with
its equilibrium counterpart to provide an intuitive physical
interpretation of the response function.

Reduction to a Dyson equation

The NEQ-BSE, Eq. (52), can be implemented in most of the
ab initio numerical schemes and codes. However, in order to
create an even closer connection to standard implementations
of the BSE, we further discuss the approximations and
conditions under which Eq. (52) turns into a simple Dyson
equation.

The crucial aspect is the choice of the reference basis and its
link with the adiabatic approximation. Let us first reexamine
the equilibrium case. Consider the representation in which heq

is diagonal, i.e., h
eq
ij = δij ε

eq
i . Then, the equilibrium density

matrix is diagonal too and its entries are the occupation factors
of the electronic levels: ρ

eq
ij = δijf

eq
i . In this basis, the Fourier

transform of the equilibrium BSE, i.e., Eq. (46), reads[
ω1 − �εeq + iKeq

c (ω)
] ◦ χ eq(ω)

= −�f eq ◦ [
1 + Keq

s ◦ χ eq(ω)
]
, (53)

where

(�εeq) ij

pq

= (
ε

eq
i − ε

eq
j

)
1 ij

pq

(54)

and

(�f eq) ij

pq

= (
f

eq
i − f

eq
j

)
1 ij

pq

. (55)

Introducing the response function

χ
eq
0 (ω) ≡ −[

ω1 − �εeq + iKeq
c (ω)

]−1 ◦ �f eq, (56)

we can rewrite Eq. (53) in the form normally used in first-
principles calculations,

χ eq(ω) = χ
eq
0 (ω) + χ

eq
0 (ω) ◦ Keq

s ◦ χ eq(ω). (57)

The correlation kernel K
eq
c (ω) appearing in χ

eq
0 deserves a

comment. In most of the applications, K
eq
c is usually replaced

by a constant, i.e., K
eq
c (ω) ≈ η. More sophisticated approx-

imations with (Keq
c ) ij

mn

≈ γiδij + γmδmn have been explored

[55]. In this case, the quasiparticle linewidths γi are calculated
from equilibrium MBPT. The approximation of a static
correlation kernel is based on the observation that dynamical

corrections to the screened interaction are partially canceled
by the dynamical effects in the quasiparticle corrections; see
Refs. [56,62].

Let us now consider the NEQ-BSE, i.e., Eq. (52). As in
the equilibrium case, we would like to introduce a χ0 and
turn Eq. (52) into a Dyson equation. However, in the NEQ
case, neither ρ̃(τ ) nor h̃τ (τ ) is diagonal in the eigenbasis of
heq. Of course we can rotate the equilibrium basis to have
h̃τ (τ ) diagonal but, in general, ρ̃(τ ) has off-diagonal entries
in this new basis too. Let O(τ ) be the unitary matrix of the
transformation from the equilibrium basis to the adiabatic
basis in which h̃τ (τ ) is diagonal,

[O†(τ )h̃τO(τ )]ij = δij ε̃i(τ ). (58)

The NEQ-BSE Eq. (52) in the adiabatic basis reads[
ω1−�ε̃(τ )+iK̃τ

c (ω)
] ◦ χτ (ω) = −[

ρ̃(τ ),K̃τ
s ◦ χτ (ω)+1

]
,

(59)

where the four-index tensor �ε̃(τ ) is defined as in Eq. (54)
with ε

eq
i → ε̃i(τ ). Next we define the NEQ response function

χτ
0 according to

χτ
0 (ω) ≡ −[

ω − �ε̃(τ ) + iK̃τ
c (ω)

]−1 ◦ [ ρ̃(τ ),1], (60)

which generalizes Eq. (56) to nondiagonal density matrices.
Using the identity[

ρ̃(τ ),K̃τ
s ◦ χτ (ω)

] = [ ρ̃(τ ),1] ◦ K̃τ
s ◦ χτ (ω), (61)

we can rewrite the NEQ-BSE in a Dyson-like form

χτ (ω) = χτ
0 (ω) + χτ

0 (ω) ◦ K̃τ
s ◦ χτ (ω). (62)

The analogy between Eq. (62) and the standard equilib-
rium BSE becomes more evident if we make some further
approximations that are often used in actual implementations:

(i) heq constructed from the dynamical GW self-energy.
In this way, the equilibrium basis is the quasiparticles basis
whose states are renormalized by dynamical effects.

(ii) To recover the equilibrium limit of standard BSE
implementations, the term δ�τ

s must be the statically screened
COHSEX approximation. This has been proved in Ref. [63].
Other choices could be done in principle for the ��τ

s term,
but, for internal consistency, the same approximation should
be used.

With these two approximations in mind, we discuss Eq. (52)
in the case of a weak pump field. This condition is often
realized in PP experiments as it allows us to photoexcite the
system without changing too much its electronic and optical
properties. Therefore, weak pump fields provide a noninvasive
method to monitor the excited states of the equilibrium system.

For weak pump fields, the density of the excited carriers
is small. This implies that we can approximate the orthogonal
matrix Oij (τ ) ≈ δij . In other words, the adiabatic basis and
the equilibrium basis are essentially the same. The obvious and
physically intuitive consequence of this fact is that the diagonal
elements of the density matrix are the NEQ occupations
ρ̃ii(τ ) = f̃i(τ ), whereas the off-diagonal elements describe the
polarization of the system. If the photoexcited carrier density is
small, the off-diagonal elements can be neglected and Eq. (60)
simplifies to

χ̃ τ
0 (ω) ≡ −[

ω − �ε̃(τ ) + iK̃τ
c (ω)

]−1 ◦ �f̃ (τ ), (63)
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where the four-index tensor �f̃ (τ ) is defined as in Eq. (55)
with f

eq
i → f̃i(τ ). In addition, the pump-induced renormal-

ization of the single-particle energy levels is

ε̃i(τ ) ≈ ε
eq
i + E(τ ) · dii + ��τ

s,ii , (64)

where ��τ
s is a time-local functional of the occupations

only. The τ -dependent renormalization of the energy levels
represents the explanation in MBPT language of the well-
known band-gap renormalization effect, i.e., the reduction of
the elemental gap induced by pump-excited carriers, measured
experimentally in Ref. [64]. A similar phenomenon has also
been described with a first-principles approach [65], although
in the equilibrium case. A more detailed discussion on the
subject will be presented in future work.

Another consequence of the diagonal structure of the den-
sity matrix is that the static kernel too becomes a functional of
the NEQ occupations only: K̃τ

s ≈ K̃s[f̃ (τ )]. This dependence
can be used to interpret the renormalization of the electron-hole
interaction and hence, in systems with bound excitons, the
renormalization of the excitonic binding energy.

V. A NUMERICAL EXAMPLE

A. Model

We illustrate the theory developed in the previous sections
by calculating the transient photoabsorption spectrum of a
four-level model system with two valence states (orbital quan-
tum numbers μ = 1,2) and two “conduction” or excited states
(orbital quantum numbers μ = 3,4). In second quantization,
the equilibrium Hamiltonian reads

Ĥ eq =
∑
μσ

εμn̂μσ + 1

2

∑
μν

σσ ′

vμνĉ
†
μσ ĉ

†
νσ ′ ĉνσ ′ ĉμσ , (65)

with n̂μσ = ĉ†μσ ĉμσ the occupation operator of level μ with
spin σ . The system is driven out of equilibrium by a strong
pulse that pumps electrons from the valence states to the
conduction states. In accordance with the notation of Eqs. (1),
we consider a pump-dipole coupling of the form

E(t) · d̂ = E(t)
∑

μ = 1,2
ν = 3,4

∑
σ

(dμνĉ
†
μσ ĉνσ + H.c.), (66)

where dμν = 〈ϕμ|ηP · r̂|ϕν〉 = ηP · dμν . After a time τ , the
excited system is irradiated by a weak ultrafast probe. The
probe-dipole coupling is the same as in Eq. (66) except that
the field amplitude E(t) is replaced by the amplitude e(t) of
the probe pulse. For the numerical simulations, we choose the
amplitudes E(t) and e(t) as [10]

E(t) = E0 sin2

(
π

t

�P

)
sin ωP t (67)

for 0 < t < �P and zero otherwise, and

e(t) = e0 sin2

(
π

t − �P − τ

�p

)
sin ωp(t − �P − τ ) (68)

for 0 < t − �P − τ < �p and zero otherwise.
The equation of motion for the single-particle density

matrix is Eq. (35). For ht (t) we take the HF Hamiltonian (see

the discussion just before Sec. III A)

ht
μν(t) = δμν

[
εμ +

∑
α

2vμαραα(t)

]
− vμνρνμ(t)

+ [E(t) + e(t)]dμν. (69)

For the collision integral, we consider a two-step relaxation
approximation (in matrix form)

I (t) ≈ {�pol(t),ρ(t) − ρqs} + {�scatt(t),ρ(t) − ρeq}, (70)

where the curly brackets signify an anticommutator. In
Eq. (70), the first term accounts for the dephasing of the
pump-induced polarization and is responsible for driving
the system toward a quasistationary state described by ρqs.
After the dephasing �pol(t) ≈ 0 and the collision integral is
dominated by the second term, which describes the relax-
ation toward the equilibrium state. The damping matrices
�pol(t) = γ pol(t)1 and �scatt(t) = γ scatt(t)1 are proportional
to the identity matrix, thus guaranteeing the conservation of
the total number of particles N = 2 Tr[ρ]. Since there is no
pump-induced dephasing in the absence of the pump, �pol is
proportional to the amplitude of the pump pulse.

The system has filled valence states and empty conduction
states at time t = 0, hence ρeq = diag{1,1,0,0}. The model
parameters as well as the HF equilibrium configuration can be
found in Fig. 2. For the dipole matrix, we use

d = d0

⎛
⎜⎝

0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

⎞
⎟⎠. (71)

The damping functions γ scatt and the two different γ pol =
γ

pol
1 , γ

pol
2 that we consider are illustrated in the bottom

panel of Fig. 2. In particular, γ pol is responsible for the
relaxation toward the quasistationary density matrix ρqs =
diag{0.9,0.9,0.1,0.1}. For the external fields, we study a pump
pulse of duration �P = 66 fs and frequency ωP = 0.6 eV, and
a probe of duration �p = 20 fs and frequency ωp = 0.6 eV; the
amplitudes E0, e0, and d0 are chosen to yield E0d0 = 0.1 eV
and e0d0 = 0.001 eV.

We calculate ρ(t) in the presence of both pump and probe
as well as the probe-free ρ̃ and then extract the probe-induced
dipole moment dp(t) = dμν[ρνμ(t) − ρ̃νμ(t)]. Successively,
we obtain the transient spectrum of Eq. (14) by Fourier
transforming the function dp(t) × e−t/τ̃p with τ̃p = 80 fs the
lifetime of the probe-induced dipole. In the figures below, the
exponential damping is always included in the probe-induced
dipole. The probe-free ρ̃ is also used in Eq. (52) to calculate
the adiabatic NEQ response function and hence the transient
spectrum according to Eq. (28). The quality of the adiabatic
approximation is assessed in different physical situations.

B. Results and discussion

As we discussed in Sec. II B, the NEQ-BSE is applicable
provided that the adiabatic condition is met. This is, for
instance, the case in experiments on bulk Si [66], as recently

205304-9



E. PERFETTO, D. SANGALLI, A. MARINI, AND G. STEFANUCCI PHYSICAL REVIEW B 92, 205304 (2015)

100 0 100 200 300 400
0

2

4

t fs

γscatt

0.1 1
pol

γ2
pol

FIG. 2. (Color online) Top panel: (a) noninteracting energy levels
ε1 = 0, ε2 = 0.1, ε3 = 1.0, and ε4 = 1.3; and (b) HF energy levels
εHF
μ = εμ + ∑

α f eq
α (2vμα − δμαvμμ) with vμμ = 0.4, v12 = v23 =

0.2, and otherwise vμν = 0.1 (we recall that f eq
α = ρeq

αα). The position
of the poles ωμν of the equilibrium TD-HF χ eq(ω) (solution of
Eqs. (56) and (57) with Keq

c = 0) can be calculated analytically and is
also indicated. Bottom panel: Plot of the damping functions γ scatt(t),
γ

pol
1 (t) (reduced by a factor of 10), and γ

pol
2 (t) used in the numerical

simulations. Energies εμ, εHF
μ , and vμν are in eV while γ scatt and γ

pol
1,2

are in meV.

shown in Ref. [67]. Here, the pump-induced polarization
(off-diagonal elements of the density matrix) damps in a
few hundred fs whereas the occupations relax to the initial
equilibrium value in a few ps. The damping function γ pol =
γ

pol
1 in Fig. 2 (bottom panel) has been devised to reproduce

this situation. The four states of the model in Fig. 2 (top
panel) can be interpreted as two representative states of the
valence band and two representative states of the conduction
band. In the top panel of Fig. 3 we show some relevant
quantities obtained from the numerical solution of Eq. (35)
with γ pol = γ

pol
1 , namely (from bottom to top) the pump

pulse E(t), the probe-free dipole d̃(t), the time-dependent
occupation n3(t) = n4(t) ≡ n(t) of the valence states 3 and
4, and the probe-induced dipole dp(t). The behavior of these
quantities closely resembles the behavior in Fig. 1. When the
probe arrives (τ = 130 fs), the pump-induced polarization is
completely dephased (τpol ∼ 100 fs), and the system is slowly
moving around the quasistationary excited state described by
ρqs. In this situation, the time scale over which the one-particle
density matrix changes is TP ∼ 1/γ scatt ∼ 103 fs. Since TP is
much larger than the lifetime τp = τ̃p + �p = 100 fs of the
dressed probe, the adiabatic condition is fulfilled; see Eq. (25).

The transient absorption spectra Sτ (ω) obtained within
NEGF according to Eq. (14) and with the NEQ-BSE according
to Eq. (28) are displayed in Fig. 4. As expected, the NEQ-BSE

0 100 200 300 400

0

n

0.5

t fs

dp t

d t

E t

0 100 200 300 400

0

n

0.5

t fs

dp t

d t

E t

FIG. 3. (Color online) From bottom to top, pump pulse E(t)
(black), probe-free dipole d̃(t) (red), occupation n3 = n4 ≡ n of
valence states (blue), and probe-induced dipole dp(t) (green) for
the large γ

pol
1 (top panel) and small γ

pol
2 (bottom panel) damping

functions. These results are obtained for a delay τ = 130 fs. The
quantities E(t), d̃(t), and δd(t) are in arbitrary units.

approach is very accurate for delays τ � −τp and τ � τpol,
i.e., when the probe-induced dipole does not overlap the
pump-induced polarization. For τ � −τp, the spectrum Sτ (ω)
is the equilibrium spectrum with four peaks at energies ωμν =
εν − εμ + �ω (with μ = 1,2, ν = 3,4, and �ω = 3v13 −
2v12 − v11), thus NEGF and NEQ-BSE obviously agree. For
τ � τpol, the system is in a nonequilibrium state and the
condition of adiabaticity matters. The NEQ-BSE well captures
the τ -dependent structure of the NEGF spectrum, with the
correct bending of the position of the four main absorption
peaks toward their equilibrium value for large τ . At first
glance, the agreement seems rather good in the overlapping
region −τp < τ < τpol too. However, in this region Sτ (ω) is
very small due to the sizable broadening induced by the large
γ

pol
1 , and a more careful comparison between the NEQ-BSE

and NEGF spectra reveals some discrepancies (not shown).
Although only two states per band have been considered, the
found agreement between NEGF and NEQ-BSE should persist
using a more accurate description. In fact, with increasing the
number of states the discrete transitions in Fig. 4 do eventually
merge to form a continuum but the trend as a function of τ

remains unchanged.
The breakdown of the adiabatic condition is realized in,

e.g., finite systems such as atoms or molecules in a strong
laser field. For example, in Ref. [42] the level occupations of a
gas of excited Kr ions relax toward the equilibrium values on
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FIG. 4. (Color online) Transient absorption spectrum Sτ (ω)
(normalized to its maximum value) obtained within NEGF according
to Eq. (14) (top panel) and with the NEQ-BSE according to Eq. (28)
(lower panel) using the damping function γ pol = γ

pol
1 . The peaks of

the NEQ-BSE spectrum have been broadened by the inverse lifetime
1/τ̃p of dp(t). Notice that the scale of the horizontal axis is linear for
τ < 100 fs and logarithmic otherwise.

the same time scale as the pump-induced polarization (the
only damping mechanism being the radiative decay). This
situation is reproduced by the damping function γ pol = γ

pol
2 .

As shown in the bottom panel of Fig. 3, the pump-induced
polarization d̃(t) is long-lived. After a time τ = 130 fs, the
time scale TP over which the one-particle density matrix
changes is given by the period of the coherent oscillations
of d̃(t) and it is roughly equal to the inverse gap 1/ω23 ≈
10 fs. Thus the condition of adiabaticity TP � τp is not
fulfilled, and no agreement between NEQ-BSE and NEGF
is expected. The transient absorption spectra are displayed in
Fig. 5 showing that the two approaches differ whenever the
probe experiences a sizable d̃(t), i.e., for −τp < τ � 500. In
this region, the NEGF spectrum exhibits alternating fringes
characterized by a large oscillation of the spectral weight
at fixed ω as a function of τ . These features origin from
the nonadiabatic coherent motion of the electrons between
valence and conduction states, and hence they are out of
reach of the NEQ-BSE approach. Remarkably, however, the
NEQ-BSE captures important spectral features even in this

FIG. 5. (Color online) Same as Fig. 4 except that the small
damping function γ

pol
2 has been used in Eq. (70).

strongly nonadiabatic situation, the most prominent feature
being the upward bending of the main peaks around τ = 0.
When the coherence is destroyed by the dephasing, i.e., for
τ > 500 fs, the NEQ-BSE and NEGF spectra are found to be
in excellent agreement.

VI. CONCLUSIONS

We propose a practical method based on MBPT to calculate
PP spectra for delays in the “adiabatic” regime. Starting from
the KBE for the Keldysh Green’s function, we use the GKBA to
obtain an equation of motion for the one-particle density matrix
ρ in the presence of both pump and probe fields. Linearization
around zero probe yields an equation for the NEQ response
function χ (t,t ′). After the action of the pump, we identify a
physically relevant regime during which the probe-free density
matrix ρ̃ varies on a time scale much longer than the lifetime
of the dressed probe. In this regime, we make the adiabatic
approximation and show that χ (t,t ′) can be written as a
function of the pump-probe delay τ and of the relative time
(t − t ′), i.e., χ (t,t ′) ≈ χτ (t − t ′). This simplification allows
us to Fourier transform with respect to the relative time and to
derive the main result of this work, namely a NEQ-BSE that
can be implemented in most of the ab initio numerical schemes
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and codes. We further provide a sound physical interpretation
of the NEQ response function, and we show that it can be
related to intrinsic spectral properties of the nonequilibrium
system. Well-known effects such as the renormalization of the
band gap and excitonic binding energies in semiconductors
and insulators are naturally explained.

The computational advantage of the NEQ-BSE over NEGF
simulations is enormous as only the probe-free one-particle
density matrix ρ̃ enters in the solution of the NEQ-BSE. This
implies that a single time propagation is sufficient to obtain the
transient spectrum for several delays. In contrast, the NEGF
approach requires a time propagation for every delay (to obtain
the one-particle density matrix with pump and probe fields) in
addition to the time propagation to obtain ρ̃. The validity of

the NEQ-BSE has been successfully demonstrated in a simple
four-level model system, and it is currently under investigation
in more realistic Hamiltonians with encouraging results.
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[59] B. Arnaud, S. Lebègue, and M. Alouani, Phys. Rev. B 71, 035308

(2005).
[60] A. Marini, J. Phys.: Conf. Ser. 427, 012003 (2013).
[61] S. Latini, E. Perfetto, A.-M. Uimonen, R. van Leeuwen, and G.

Stefanucci, Phys. Rev. B 89, 075306 (2014).
[62] F. Bechstedt, K. Tenelsen, B. Adolph, and R. Del Sole,

Phys. Rev. Lett. 78, 1528 (1997).
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