266 research outputs found

    An Empirical Study on Different Ranking Methods for Effective Data Classification

    Get PDF
    Ranking is the attribute selection technique used in the pre-processing phase to emphasize the most relevant attributes which allow models of classification simpler and easy to understand. It is a very important and a central task for information retrieval, such as web search engines, recommendation systems, and advertisement systems. A comparison between eight ranking methods was conducted. Ten different learning algorithms (NaiveBayes, J48, SMO, JRIP, Decision table, RandomForest, Multilayerperceptron, Kstar) were used to test the accuracy. The ranking methods with different supervised learning algorithms give different results for balanced accuracy. It was shown the selection of ranking methods could be important for classification accuracy

    A fuzzy DEMATEL approach based on intuitionistic fuzzy information for evaluating knowledge transfer effectiveness in GSD projects

    Get PDF
    The offshore/onsite teams' effectiveness of knowledge transfer is significantly measured by various kinds of factors. In this paper, we propose a knowledge transfer (KT) assessment framework which integrates four criteria for evaluating the KT effectiveness of GSD teams. These are: knowledge, team, technology, and organisation factors. In this context, we present a fuzzy DEMATEL approach for assessing GSD teams KT effectiveness based on intuitionistic fuzzy numbers (IFNs). In this approach, decision makers provide their subjective judgments on the criteria, characterised on the basis of intuitionistic fuzzy sets. Moreover, intuitionistic fuzzy sets used in the fuzzy DEMATEL approach can effectively assess the KT effectiveness criteria and rank the alternatives. Subsequently, the entire process is illustrated with GSD teams' KT evaluation criteria samples, and the factors are ranked using fuzzy linguistic variables which are mapped to IFNs. Afterwards, the IFNs are converted into their corresponding basic probability assignments (BPAs) and then the Dempster-Shafer theory is used to combine the group decision making process. Besides, illustrative applicability and usefulness of the proposed approach in group decision making process for the evaluation of multiple criteria under fuzzy environment has been tested by software professionals at Inowits Software Organisation in India

    Object Tracking in Vary Lighting Conditions for Fog based Intelligent Surveillance of Public Spaces

    Get PDF
    With rapid development of computer vision and artificial intelligence, cities are becoming more and more intelligent. Recently, since intelligent surveillance was applied in all kind of smart city services, object tracking attracted more attention. However, two serious problems blocked development of visual tracking in real applications. The first problem is its lower performance under intense illumination variation while the second issue is its slow speed. This paper addressed these two problems by proposing a correlation filter based tracker. Fog computing platform was deployed to accelerate the proposed tracking approach. The tracker was constructed by multiple positions' detections and alternate templates (MPAT). The detection position was repositioned according to the estimated speed of target by optical flow method, and the alternate template was stored with a template update mechanism, which were all computed at the edge. Experimental results on large-scale public benchmark datasets showed the effectiveness of the proposed method in comparison with state-of-the-art methods

    Variable Fractional Digital Delay Filter on Reconfigurable Hardware

    Get PDF
    This thesis describes a design for a variable fractional delay (VFD) finite impulse reponse (FIR) filter implemented on reconfigurable hardware. Fractionally delayed signals are required for several audio-based applications, including echo cancellation and musical signal analysis. Traditionally, VFD FIR filters have been implemented using a fixed structure in software based upon the order of the filter. This fixed structure restricts the range of valid fractional delay values permitted by the filter. This proposed design implements an order-scalable FIR filter, permitting fractionally delayed signals of widely varying integer sizes. Furthermore, the proposed design of this thesis builds upon the traditional Lagrange interpolator FIR filter using either asoftware-based coefficient computational unit or hardware-based coefficient computational unit in reconfigurable hardware for updating the FIR coefficients in real-time. Traditional Lagrange interpolator FIR filters have only permitted fixed fractional delay. However, by leveraging todays (2012) low-cost high performance reconfigurable hardware, an FIR-based fractional delay filter was created to permit varying fractional delay. A software/hardware hybrid VFD filter was prototyped using the Xilinx System Generator toolkit. The resulting real-time VFD FIR filter was tested usingSystem Generator, as well as Xilinx ISE and ModelSim.M.S., Computer Engineering -- Drexel University, 201

    Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities

    Full text link
    [EN] Fog computing is emerging an attractive paradigm for both academics and industry alike. Fog computing holds potential for new breeds of services and user experience. However, Fog computing is still nascent and requires strong groundwork to adopt as practically feasible, cost-effective, efficient and easily deployable alternate to currently ubiquitous cloud. Fog computing promises to introduce cloud-like services on local network while reducing the cost. In this paper, we present a novel resource efficient framework for distributed video summarization over a multi-region fog computing paradigm. The nodes of the Fog network is based on resource constrained device Raspberry Pi. Surveillance videos are distributed on different nodes and a summary is generated over the Fog network, which is periodically pushed to the cloud to reduce bandwidth consumption. Different realistic workload in the form of a surveillance videos are used to evaluate the proposed system. Experimental results suggest that even by using an extremely limited resource, single board computer, the proposed framework has very little overhead with good scalability over off-the-shelf costly cloud solutions, validating its effectiveness for IoT-assisted smart cities. (C) 2018 Elsevier Inc. All rights reserved.Nasir, M.; Muhammad, K.; Lloret, J.; Sangaiah, AK.; Sajjad, M. (2019). Fog computing enabled cost-effective distributed summarization of surveillance videos for smart cities. Journal of Parallel and Distributed Computing. 126:161-170. https://doi.org/10.1016/j.jpdc.2018.11.004S16117012

    A Q-learning-based approach for deploying dynamic service function chains

    Get PDF
    As the size and service requirements of today’s networks gradually increase, large numbers of proprietary devices are deployed, which leads to network complexity, information security crises and makes network service and service provider management increasingly difficult. Network function virtualization (NFV) technology is one solution to this problem. NFV separates network functions from hardware and deploys them as software on a common server. NFV can be used to improve service flexibility and isolate the services provided for each user, thus guaranteeing the security of user data. Therefore, the use of NFV technology includes many problems worth studying. For example, when there is a free choice of network path, one problem is how to choose a service function chain (SFC) that both meets the requirements and offers the service provider maximum profit. Most existing solutions are heuristic algorithms with high time efficiency, or integer linear programming (ILP) algorithms with high accuracy. It’s necessary to design an algorithm that symmetrically considers both time efficiency and accuracy. In this paper, we propose the Q-learning Framework Hybrid Module algorithm (QLFHM), which includes reinforcement learning to solve this SFC deployment problem in dynamic networks. The reinforcement learning module in QLFHM is responsible for the output of alternative paths, while the load balancing module in QLFHM is responsible for picking the optimal solution from them. The results of a comparison simulation experiment on a dynamic network topology show that the proposed algorithm can output the approximate optimal solution in a relatively short time while also considering the network load balance. Thus, it achieves the goal of maximizing the benefit to the service provider

    Secure and Robust Fragile Watermarking Scheme for Medical Images

    Get PDF
    Over the past decade advances in computer-based communication and health services, the need for image security becomes urgent to address the requirements of both safety and non-safety in medical applications. This paper proposes a new fragile watermarking based scheme for image authentication and self-recovery for medical applications. The proposed scheme locates image tampering as well as recovers the original image. A host image is broken into 4×4 blocks and Singular Value Decomposition (SVD) is applied by inserting the traces of block wise SVD into the Least Significant Bit (LSB) of the image pixels to figure out the transformation in the original image. Two authentication bits namely block authentication and self-recovery bits were used to survive the vector quantization attack. The insertion of self-recovery bits is determined with Arnold transformation, which recovers the original image even after a high tampering rate. SVD-based watermarking information improves the image authentication and provides a way to detect different attacked area. The proposed scheme is tested against different types of attacks such are text removal attack, text insertion attack, and copy and paste attack

    A Reliability-Aware Approach for Resource Efficient Virtual Network Function Deployment

    Get PDF
    OAPA Network function virtualization (NFV) is a promising technique aimed at reducing capital expenditures (CAPEX) and operating expenditures (OPEX), and improving the flexibility and scalability of an entire network. In contrast to traditional dispatching, NFV can separate network functions from proprietary infrastructure and gather these functions into a resource pool that can efficiently modify and adjust service function chains (SFCs). However, this emerging technique has some challenges. A major problem is reliability, which involves ensuring the availability of deployed SFCs, namely, the probability of successfully chaining a series of virtual network functions (VNFs) while considering both the feasibility and the specific requirements of clients, because the substrate network remains vulnerable to earthquakes, floods and other natural disasters. Based on the premise of users & #x2019; demands for SFC requirements, we present an Ensure Reliability Cost Saving (ER & #x005F;CS) algorithm to reduce the CAPEX and OPEX of telecommunication service providers (TSPs) by reducing the reliability of the SFC deployments. The results of extensive experiments indicate that the proposed algorithms perform efficiently in terms of the blocking ratio, resource consumption, time consumption and the first block
    corecore