2,200 research outputs found

    Akabane viral encephalitis in calves in South Korea

    Get PDF
    This work was supported by the Brain Korea 21 Project and the Ministry of Agriculture and Forestry (399002-3), Republic of Korea

    Intake of dietary antioxidants is inversely associated with biomarkers of oxidative stress among men with prostate cancer

    Get PDF
    Abstract Prostate cancer is the most common non-cutaneous cancer and the second leading cause of cancer-related mortality among men in the USA. Growing evidence suggests that oxidative stress is involved in the development and progression of prostate cancer. In this study, the association between antioxidants from diet and supplements and biomarkers of oxidative stress in blood ( n 278), urine ( n 298) and prostate tissue ( n 55) were determined among men from the North Carolina-Louisiana Prostate Cancer Project. The association between antioxidant intake and oxidative stress biomarkers in blood and urine was determined using linear regression, adjusting for age, race, prostate cancer aggressiveness and smoking status. Greater antioxidant intake was found to be associated with lower urinary 8-isoprostane concentrations, with a 10 % increase in antioxidant intake corresponding to an unadjusted 1·1 % decrease in urinary 8-isoprostane levels (95 % CI −1·7, −0·3 %; P value<0·01) and an adjusted 0·6 % decrease (95 % CI −1·4, 0·2 %; P value=0·16). In benign prostate tissue, thioredoxin 1 was inversely associated with antioxidant intake ( P =0·02). No significant associations were found for other blood or urinary biomarkers or for malignant prostate tissue. These results indicate that antioxidant intake may be associated with less oxidative stress among men diagnosed with prostate cancer

    Automatic segmentation of multiple cardiovascular structures from cardiac computed tomography angiography images using deep learning.

    Get PDF
    OBJECTIVES:To develop, demonstrate and evaluate an automated deep learning method for multiple cardiovascular structure segmentation. BACKGROUND:Segmentation of cardiovascular images is resource-intensive. We design an automated deep learning method for the segmentation of multiple structures from Coronary Computed Tomography Angiography (CCTA) images. METHODS:Images from a multicenter registry of patients that underwent clinically-indicated CCTA were used. The proximal ascending and descending aorta (PAA, DA), superior and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right ventricular wall (RVW) and left atrial wall (LAW) were annotated as ground truth. The U-net-derived deep learning model was trained, validated and tested in a 70:20:10 split. RESULTS:The dataset comprised 206 patients, with 5.130 billion pixels. Mean age was 59.9 ± 9.4 yrs., and was 42.7% female. An overall median Dice score of 0.820 (0.782, 0.843) was achieved. Median Dice scores for PAA, DA, SVC, IVC, PA, CS, RVW and LAW were 0.969 (0.979, 0.988), 0.953 (0.955, 0.983), 0.937 (0.934, 0.965), 0.903 (0.897, 0.948), 0.775 (0.724, 0.925), 0.720 (0.642, 0.809), 0.685 (0.631, 0.761) and 0.625 (0.596, 0.749) respectively. Apart from the CS, there were no significant differences in performance between sexes or age groups. CONCLUSIONS:An automated deep learning model demonstrated segmentation of multiple cardiovascular structures from CCTA images with reasonable overall accuracy when evaluated on a pixel level

    Outbreak and control of haemorrhagic pneumonia due to Streptococcus equi subspecies zooepidemicus in dogs

    Get PDF
    This work was supported by the Brain Korea 21 Program for Veterinary Science and the Korea Research Foundation (KRF- 2004-005-E00077)

    Observation of new magnetic ground state in frustrated quantum antiferromagnet spin-liquid system Cs2CuCl4

    Get PDF
    Cs2CuCl4 is known to possess a quantum spin-liquid phase with antiferromagnetic interaction below 2.8 K. We report the observation of a new metastable magnetic phase of the triangular frustrated quantum spin system Cs2CuCl4 induced by the application of hydrostatic pressure. We measured the magnetic properties of Cs2CuCl4 following the application and release of pressure after 3 days. We observed a previously unknown ordered magnetic phase with a transition temperature of 9 K. Furthermore, the recovered sample with new magnetic ground state possesses an equivalent crystal structure to the uncompressed one with antiferromagnetic quantum spinliquid phase

    Perpendicular Magnetic Anisotropy in FePt Patterned Media Employing a CrV Seed Layer

    Get PDF
    A thin FePt film was deposited onto a CrV seed layer at 400°C and showed a high coercivity (~3,400 Oe) and high magnetization (900–1,000 emu/cm3) characteristic of L10 phase. However, the magnetic properties of patterned media fabricated from the film stack were degraded due to the Ar-ion bombardment. We employed a deposition-last process, in which FePt film deposited at room temperature underwent lift-off and post-annealing processes, to avoid the exposure of FePt to Ar plasma. A patterned medium with 100-nm nano-columns showed an out-of-plane coercivity fivefold larger than its in-plane counterpart and a remanent magnetization comparable to saturation magnetization in the out-of-plane direction, indicating a high perpendicular anisotropy. These results demonstrate the high perpendicular anisotropy in FePt patterned media using a Cr-based compound seed layer for the first time and suggest that ultra-high-density magnetic recording media can be achieved using this optimized top-down approach

    An Engineered Viral Protease Exhibiting Substrate Specificity for a Polyglutamine Stretch Prevents Polyglutamine-Induced Neuronal Cell Death

    Get PDF
    BACKGROUND: Polyglutamine (polyQ)-induced protein aggregation is the hallmark of a group of neurodegenerative diseases, including Huntington's disease. We hypothesized that a protease that could cleave polyQ stretches would intervene in the initial events leading to pathogenesis in these diseases. To prove this concept, we aimed to generate a protease possessing substrate specificity for polyQ stretches. METHODOLOGY/PRINCIPAL FINDINGS: Hepatitis A virus (HAV) 3C protease (3CP) was subjected to engineering using a yeast-based method known as the Genetic Assay for Site-specific Proteolysis (GASP). Analysis of the substrate specificity revealed that 3CP can cleave substrates containing glutamine at positions P5, P4, P3, P1, P2', or P3', but not substrates containing glutamine at the P2 or P1' positions. To accommodate glutamine at P2 and P1', key residues comprising the active sites of the S2 or S1' pockets were separately randomized and screened. The resulting sets of variants were combined by shuffling and further subjected to two rounds of randomization and screening using a substrate containing glutamines from positions P5 through P3'. One of the selected variants (Var26) reduced the expression level and aggregation of a huntingtin exon1-GFP fusion protein containing a pathogenic polyQ stretch (HttEx1(97Q)-GFP) in the neuroblastoma cell line SH-SY5Y. Var26 also prevented cell death and caspase 3 activation induced by HttEx1(97Q)-GFP. These protective effects of Var26 were proteolytic activity-dependent. CONCLUSIONS/SIGNIFICANCE: These data provide a proof-of-concept that proteolytic cleavage of polyQ stretches could be an effective modality for the treatment of polyQ diseases

    a cluster analysis of PARADIGM registry data

    Get PDF
    Patient-specific phenotyping of coronary atherosclerosis would facilitate personalized risk assessment and preventive treatment. We explored whether unsupervised cluster analysis can categorize patients with coronary atherosclerosis according to their plaque composition, and determined how these differing plaque composition profiles impact plaque progression. Patients with coronary atherosclerotic plaque (n = 947; median age, 62 years; 59% male) were enrolled from a prospective multi-national registry of consecutive patients who underwent serial coronary computed tomography angiography (median inter-scan duration, 3.3 years). K-means clustering applied to the percent volume of each plaque component and identified 4 clusters of patients with distinct plaque composition. Cluster 1 (n = 52), which comprised mainly fibro-fatty plaque with a significant necrotic core (median, 55.7% and 16.0% of the total plaque volume, respectively), showed the least total plaque volume (PV) progression (+ 23.3 mm3), with necrotic core and fibro-fatty PV regression (− 5.7 mm3 and − 5.6 mm3, respectively). Cluster 2 (n = 219), which contained largely fibro-fatty (39.2%) and fibrous plaque (46.8%), showed fibro-fatty PV regression (− 2.4 mm3). Cluster 3 (n = 376), which comprised mostly fibrous (62.7%) and calcified plaque (23.6%), showed increasingly prominent calcified PV progression (+ 21.4 mm3). Cluster 4 (n = 300), which comprised mostly calcified plaque (58.7%), demonstrated the greatest total PV increase (+ 50.7mm3), predominantly increasing in calcified PV (+ 35.9 mm3). Multivariable analysis showed higher risk for plaque progression in Clusters 3 and 4, and higher risk for adverse cardiac events in Clusters 2, 3, and 4 compared to that in Cluster 1. Unsupervised clustering algorithms may uniquely characterize patient phenotypes with varied atherosclerotic plaque profiles, yielding distinct patterns of progressive disease and outcome.publishersversionpublishe
    corecore