203 research outputs found

    Impurity State and Variable Range Hopping Conduction in Graphene

    Full text link
    The variable range hopping theory, as formulated for exponentially localized impurity states, does not necessarily apply in the case of graphene with covalently attached impurities. We analyze the localization of impurity states in graphene using the nearest-neighbor, tight-binding model of an adatom-graphene system with Green's function perturbation methods. The amplitude of the impurity state wave function is determined to decay as a power law with exponents depending on sublattice, direction, and the impurity species. We revisit the variable range hopping theory in view of this result and find that the conductivity depends as a power law of the temperature with an exponent related to the localization of the wave function. We show that this temperature dependence is in agreement with available experimental results

    Computer-aid molecular docking technology in cereal mycotoxin analysis: Poster

    Get PDF
    Computer-aid molecular docking is a simulative process that receptors and ligands recognize each other through energy matching and geometric matching. It is widely used in bioactive compounds simulative screening and preliminary exploring the bioactivity and toxicity of molecular, which plays important guiding role in toxicity and bioactivity study of molecular entities. In our study, we used the computer-aid molecular docking software-discovery studio 3.1 client to test the mechanism of aflatoxins such as aflatoxin B1, B2, M1, M2, G1, G2 and the results of our experiment help to illustrate the pathway of aflatoxin’s toxication. We also used this technology to test the preliminary toxicity of zearalenone (ZEN) and its two degradation products: a- zearalenol (a-ZOL) and ß-zearalenol (ß-ZOL), which indicates that these three products possessed significant estrogenic activity. The order of the estrogenic activity is: a-zearalenol > zearalenone >ß-zearalenol.Computer-aid molecular docking is a simulative process that receptors and ligands recognize each other through energy matching and geometric matching. It is widely used in bioactive compounds simulative screening and preliminary exploring the bioactivity and toxicity of molecular, which plays important guiding role in toxicity and bioactivity study of molecular entities. In our study, we used the computer-aid molecular docking software-discovery studio 3.1 client to test the mechanism of aflatoxins such as aflatoxin B1, B2, M1, M2, G1, G2 and the results of our experiment help to illustrate the pathway of aflatoxin’s toxication. We also used this technology to test the preliminary toxicity of zearalenone (ZEN) and its two degradation products: a- zearalenol (a-ZOL) and ß-zearalenol (ß-ZOL), which indicates that these three products possessed significant estrogenic activity. The order of the estrogenic activity is: a-zearalenol > zearalenone >ß-zearalenol

    Power-law distribution and scale-invariant structure from the first CHIME/FRB Fast Radio Burst catalog

    Full text link
    We study the statistical property of fast radio bursts (FRBs) based on a selected sample of 190 one-off FRBs in the first CHIME/FRB catalog. Three power law models are used in the analysis, and we find the cumulative distribution functions of energy can be well fitted by bent power law and thresholded power law models. And the distribution functions of fluctuations of energy well follow the Tsallis qq-Gaussian distribution. The qq values in the Tsallis qq-Gaussian distribution are constant with small fluctuations for different temporal scale intervals, indicating a scale-invariant structure of the bursts. The earthquakes and soft gamma repeaters show similar properties, which are consistent with the predictions of self-organized criticality systems.Comment: 7 pages, 3 figures, 2 tables; accepted for publication in Research in Astronomy and Astrophysic

    Treadmill Exercise Ameliorates Chemotherapy-Induced Muscle Weakness and Central Fatigue by Enhancing Mitochondrial Function and Inhibiting Apoptosis

    Get PDF
    Purpose Chemotherapy is associated with the side effects including damage to the mitochondrial DNA. Doxorubicin (DOX) serves as a chemotherapeutic agent for the patients with breast cancer or prostate cancer. DOX causes muscle weakness and fatigue. We investigated the effects of treadmill exercise on DOX-induced apoptosis and mitochondrial dysfunction in relation to central fatigue. For this study, we used the rat model of DOX-induced muscle damage. Methods DOX (2 mg/kg) was intraperitoneally injected 1 time per week for 4 weeks. Treadmill running continued 5 days per week for 4 weeks. Muscle strength and fatigue index in the gastrocnemius were measured. Immunohistochemistry for the expressions of tryptophan hydroxylase (TPH) and 5-hydroxytryptamine (5-HT) in the dorsal raphe was conducted. We used western blot analysis for the expressions of Bax, Bcl-2, and caspases-3 in the gastrocnemius. Mitochondrial function in the gastrocnemius was also evaluated. Results DOX treatment decreased muscle strength with increase of fatigue index in the gastrocnemius. Mitochondria function was deteriorated and apoptosis in the gastrocnemius was enhanced by DOX treatment. Expressions of TPH and 5-HT in the dorsal raphe were increased by DOX treatment. Treadmill exercise attenuated DOX-induced muscle fatigue and impairment of mitochondria function. Apoptosis in the gastrocnemius was inhibited and over-expression of TPH and 5-HT was suppressed by treadmill exercise. Conclusions Apoptosis was enhanced and mitochondria function was deteriorated by DOX treatment, resulting in muscle weakness and central fatigue. Treadmill exercise suppressed apoptosis and prevented deterioration of mitochondria function in muscle, resulting in alleviation of muscle weakness and central fatigue during DOX therapy

    Analysis on the pathogenic genes of 60 Chinese children with congenital hyperinsulinemia

    Get PDF
    This study aims to summarize and analyze the clinical manifestations, genetic characteristics, treatment modalities and long-term prognosis of congenital hyperinsulinemia (CHI) in Chinese children. Sixty children with CHI, who were treated at Beijing Children’s Hospital from January 2014 to August 2017, and their families, were selected as subjects. The CHI-related causative genes in children were sequenced and analyzed using second-generation sequencing technology. Furthermore, the genetic pathogenesis and clinical characteristics of Chinese children with CHI were explored. Among the 60 CHI children, 27 children (27/60, 45%) carried known CHI-related gene mutations: 16 children (26.7%) carried ABCC8 gene mutations, seven children (11.7%) carried GLUD1 gene mutations, one child carried GCK gene mutations, two children carried HNF4α gene mutations and one child carried HADH gene mutations. In these 60 patients, eight patients underwent 18F-L-DOPA PET scan for the pancreas, and five children were found to be focal type. The treatment of diazoxide was ineffective in these five patients, and hypoglycemia could be controlled after receiving partial pancreatectomy. In conclusion, ABCC8 gene mutation is the most common cause of CHI in Chinese children. The early genetic analysis of children’s families has an important guiding significance for treatment planning and prognosis assessment

    Retrospective analysis of 23 Chinese children with congenital hyperinsulinism undergoing pancreatectomy

    Get PDF
    Introduction: The aim of the study was to discuss therapeutic effect and prognosis of pancreatectomy in the treatment of congenital hyperinsulinism (CHI). Material and methods: A total of 23 Chinese children with CHI, who had undergone pancreatectomy, were selected as the study objects. The clinical data, the results of the 18Fluoro-L-3-4 dihydroxyphenylalanine positron emission tomography/computerized tomography (18F-DOPA PET/CT) scanning, and the diagnosis, treatment, and follow-up were analysed retrospectively. Results: Among the 23 cases, 14 patients were diagnosed with focal-type CHI via a 18F-DOPA PET/CT scan prior to the operation, with the lesions removed via partial pancreatectomy. After the operation, ten patients (71%) had normal blood glucose levels, while frequent feeding was required in four patients (29%) to control the hypoglycaemia. Three cases were diagnosed as diffuse-type CHI via preoperative scanning, two of which were treated by subtotal pancreatectomy. The other case was treated by near-total pancreatectomy, and the blood glucose level was normal following the operation. The remaining six cases were not diagnosed via the pancreatic scanning prior to the operation due to the limitation of certain conditions. Here, pancreatectomy was performed directly due to severe hypoglycaemia. Conclusions: 18F-DOPA PET/CT scanning was a reliable method for determining the histological type and localizing the lesion before the operation. Partial pancreatectomy for focal-type CHI had a high cure rate.

    Tubeless video-assisted thoracic surgery for pulmonary ground-glass nodules: expert consensus and protocol (Guangzhou)

    Get PDF

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Publisher Copyright: © 2022, The Author(s).Background: Genetic variants within nearly 1000 loci are known to contribute to modulation of blood lipid levels. However, the biological pathways underlying these associations are frequently unknown, limiting understanding of these findings and hindering downstream translational efforts such as drug target discovery. Results: To expand our understanding of the underlying biological pathways and mechanisms controlling blood lipid levels, we leverage a large multi-ancestry meta-analysis (N = 1,654,960) of blood lipids to prioritize putative causal genes for 2286 lipid associations using six gene prediction approaches. Using phenome-wide association (PheWAS) scans, we identify relationships of genetically predicted lipid levels to other diseases and conditions. We confirm known pleiotropic associations with cardiovascular phenotypes and determine novel associations, notably with cholelithiasis risk. We perform sex-stratified GWAS meta-analysis of lipid levels and show that 3–5% of autosomal lipid-associated loci demonstrate sex-biased effects. Finally, we report 21 novel lipid loci identified on the X chromosome. Many of the sex-biased autosomal and X chromosome lipid loci show pleiotropic associations with sex hormones, emphasizing the role of hormone regulation in lipid metabolism. Conclusions: Taken together, our findings provide insights into the biological mechanisms through which associated variants lead to altered lipid levels and potentially cardiovascular disease risk.Peer reviewe

    Implicating genes, pleiotropy, and sexual dimorphism at blood lipid loci through multi-ancestry meta-analysis

    Get PDF
    Funding GMP, PN, and CW are supported by NHLBI R01HL127564. GMP and PN are supported by R01HL142711. AG acknowledge support from the Wellcome Trust (201543/B/16/Z), European Union Seventh Framework Programme FP7/2007–2013 under grant agreement no. HEALTH-F2-2013–601456 (CVGenes@Target) & the TriPartite Immunometabolism Consortium [TrIC]-Novo Nordisk Foundation’s Grant number NNF15CC0018486. JMM is supported by American Diabetes Association Innovative and Clinical Translational Award 1–19-ICTS-068. SR was supported by the Academy of Finland Center of Excellence in Complex Disease Genetics (Grant No 312062), the Finnish Foundation for Cardiovascular Research, the Sigrid Juselius Foundation, and University of Helsinki HiLIFE Fellow and Grand Challenge grants. EW was supported by the Finnish innovation fund Sitra (EW) and Finska Läkaresällskapet. CNS was supported by American Heart Association Postdoctoral Fellowships 15POST24470131 and 17POST33650016. Charles N Rotimi is supported by Z01HG200362. Zhe Wang, Michael H Preuss, and Ruth JF Loos are supported by R01HL142302. NJT is a Wellcome Trust Investigator (202802/Z/16/Z), is the PI of the Avon Longitudinal Study of Parents and Children (MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical Research Centre (BRC-1215–2001) and the MRC Integrative Epidemiology Unit (MC_UU_00011), and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A19169). Ruth E Mitchell is a member of the MRC Integrative Epidemiology Unit at the University of Bristol funded by the MRC (MC_UU_00011/1). Simon Haworth is supported by the UK National Institute for Health Research Academic Clinical Fellowship. Paul S. de Vries was supported by American Heart Association grant number 18CDA34110116. Julia Ramierz acknowledges support by the People Programme of the European Union’s Seventh Framework Programme grant n° 608765 and Marie Sklodowska-Curie grant n° 786833. Maria Sabater-Lleal is supported by a Miguel Servet contract from the ISCIII Spanish Health Institute (CP17/00142) and co-financed by the European Social Fund. Jian Yang is funded by the Westlake Education Foundation. Olga Giannakopoulou has received funding from the British Heart Foundation (BHF) (FS/14/66/3129). CHARGE Consortium cohorts were supported by R01HL105756. Study-specific acknowledgements are available in the Additional file 32: Supplementary Note. The views expressed in this manuscript are those of the authors and do not necessarily represent the views of the National Heart, Lung, and Blood Institute; the National Institutes of Health; or the U.S. Department of Health and Human Services.Peer reviewedPublisher PD
    corecore