645 research outputs found

    The Structure of a Low-Metallicity Giant Molecular Cloud Complex

    Full text link
    To understand the impact of low metallicities on giant molecular cloud (GMC) structure, we compare far infrared dust emission, CO emission, and dynamics in the star-forming complex N83 in the Wing of the Small Magellanic Cloud. Dust emission (measured by Spitzer as part of the S3MC and SAGE-SMC surveys) probes the total gas column independent of molecular line emission and traces shielding from photodissociating radiation. We calibrate a method to estimate the dust column using only the high-resolution Spitzer data and verify that dust traces the ISM in the HI-dominated region around N83. This allows us to resolve the relative structures of H2, dust, and CO within a giant molecular cloud complex, one of the first times such a measurement has been made in a low-metallicity galaxy. Our results support the hypothesis that CO is photodissociated while H2 self-shields in the outer parts of low-metallicity GMCs, so that dust/self shielding is the primary factor determining the distribution of CO emission. Four pieces of evidence support this view. First, the CO-to-H2 conversion factor averaged over the whole cloud is very high 4-11 \times 10^21 cm^-2/(K km/s), or 20-55 times the Galactic value. Second, the CO-to-H2 conversion factor varies across the complex, with its lowest (most nearly Galactic) values near the CO peaks. Third, bright CO emission is largely confined to regions of relatively high line-of-sight extinction, A_V >~ 2 mag, in agreement with PDR models and Galactic observations. Fourth, a simple model in which CO emerges from a smaller sphere nested inside a larger cloud can roughly relate the H2 masses measured from CO kinematics and dust.Comment: 17 pages, 10 figures (including appendix), accepted for publication in the Astrophysical Journa

    A Detailed Study of the Radio--FIR Correlation in NGC6946 with Herschel-PACS/SPIRE from KINGFISH

    Get PDF
    We derive the distribution of the synchrotron spectral index across NGC6946 and investigate the correlation between the radio continuum (synchrotron) and far-infrared (FIR) emission using the KINGFISH Herschel PACS and SPIRE data. The radio--FIR correlation is studied as a function of star formation rate, magnetic field strength, radiation field strength, and the total gas surface brightness. The synchrotron emission follows both star-forming regions and the so-called magnetic arms present in the inter-arm regions. The synchrotron spectral index is steepest along the magnetic arms (αn1\alpha_n \sim 1), while it is flat in places of giant H{\sc ii} regions and in the center of the galaxy (αn0.60.7\alpha_n \sim 0.6-0.7). The map of αn\alpha_n provides an observational evidence for aging and energy loss of cosmic ray electrons propagating in the disk of the galaxy. Variations in the synchrotron--FIR correlation across the galaxy are shown to be a function of both star formation and magnetic fields. We find that the synchrotron emission correlates better with cold rather than with warm dust emission, when the interstellar radiation field is the main heating source of dust. The synchrotron--FIR correlation suggests a coupling between the magnetic field and the gas density. NGC6946 shows a power-law behavior between the total (turbulent) magnetic field strength B and the star formation rate surface density ΣSFR\Sigma_{\rm SFR} with an index of 0.14\,(0.16)±\pm0.01. This indicates an efficient production of the turbulent magnetic field with the increasing gas turbulence expected in actively star forming regions. The scale-by-scale analysis of the synchrotron--FIR correlation indicates that the ISM affects the propagation of old/diffused cosmic ray electrons, resulting in a diffusion coefficient of D0=4.6×1028D_0=4.6\times 10^{28}\,cm2^2\,s1^{-1} for 2.2\,GeV CREs.Comment: 23 pages, 13 figures, accepted for publication in Astronomy & Astrophysics Journa

    First astronomical unit scale image of the GW Ori triple. Direct detection of a new stellar companion

    Get PDF
    Young and close multiple systems are unique laboratories to probe the initial dynamical interactions between forming stellar systems and their dust and gas environment. Their study is a key building block to understanding the high frequency of main-sequence multiple systems. However, the number of detected spectroscopic young multiple systems that allow dynamical studies is limited. GW Orionis is one such system. It is one of the brightest young T Tauri stars and is surrounded by a massive disk. Our goal is to probe the GW Orionis multiplicity at angular scales at which we can spatially resolve the orbit. We used the IOTA/IONIC3 interferometer to probe the environment of GW Orionis with an astronomical unit resolution in 2003, 2004, and 2005. By measuring squared visibilities and closure phases with a good UV coverage we carry out the first image reconstruction of GW Ori from infrared long-baseline interferometry. We obtain the first infrared image of a T Tauri multiple system with astronomical unit resolution. We show that GW Orionis is a triple system, resolve for the first time the previously known inner pair (separation ρ\rho\sim1.4 AU) and reveal a new more distant component (GW Ori C) with a projected separation of \sim8 AU with direct evidence of motion. Furthermore, the nearly equal (2:1) H-band flux ratio of the inner components suggests that either GW Ori B is undergoing a preferential accretion event that increases its disk luminosity or that the estimate of the masses has to be revisited in favour of a more equal mass-ratio system that is seen at lower inclination. Accretion disk models of GW Ori will need to be completely reconsidered because of this outer companion C and the unexpected brightness of companion B.Comment: 5 pages, 9 figures, accepted Astronomy and Astrophysics Letters. 201

    Structural optimization incorporating centrifugal and Coriolis effects

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76888/1/AIAA-10798-921.pd

    Modeling Dust and Starlight in Galaxies Observed by Spitzer and Herschel: NGC 628 and NGC 6946

    Get PDF
    We characterize the dust in NGC628 and NGC6946, two nearby spiral galaxies in the KINGFISH sample. With data from 3.6um to 500um, dust models are strongly constrained. Using the Draine & Li (2007) dust model, (amorphous silicate and carbonaceous grains), for each pixel in each galaxy we estimate (1) dust mass surface density, (2) dust mass fraction contributed by polycyclic aromatic hydrocarbons (PAH)s, (3) distribution of starlight intensities heating the dust, (4) total infrared (IR) luminosity emitted by the dust, and (5) IR luminosity originating in regions with high starlight intensity. We obtain maps for the dust properties, which trace the spiral structure of the galaxies. The dust models successfully reproduce the observed global and resolved spectral energy distributions (SEDs). The overall dust/H mass ratio is estimated to be 0.0082+/-0.0017 for NGC628, and 0.0063+/-0.0009 for NGC6946, consistent with what is expected for galaxies of near-solar metallicity. Our derived dust masses are larger (by up to a factor 3) than estimates based on single-temperature modified blackbody fits. We show that the SED fits are significantly improved if the starlight intensity distribution includes a (single intensity) "delta function" component. We find no evidence for significant masses of cold dust T<12K. Discrepancies between PACS and MIPS photometry in both low and high surface brightness areas result in large uncertainties when the modeling is done at PACS resolutions, in which case SPIRE, MIPS70 and MIPS160 data cannot be used. We recommend against attempting to model dust at the angular resolution of PACS.Comment: To be published in Apj, September 2012. See the full version at http://www.astro.princeton.edu/~ganiano/Papers

    Submillimeter to centimeter excess emission from the Magellanic Clouds. II. On the nature of the excess

    Get PDF
    Dust emission at submm to cm wavelengths is often simply the Rayleigh-Jeans tail of dust particles at thermal equilibrium and is used as a cold mass tracer in various environments including nearby galaxies. However, well-sampled spectral energy distributions of the nearby, star-forming Magellanic Clouds have a pronounced (sub-)millimeter excess (Israel et al., 2010). This study attempts to confirm the existence of such a millimeter excess above expected dust, free-free and synchrotron emission and to explore different possibilities for its origin. We model NIR to radio spectral energy distributions of the Magellanic Clouds with dust, free-free and synchrotron emission. A millimeter excess emission is confirmed above these components and its spectral shape and intensity are analysed in light of different scenarios: very cold dust, Cosmic Microwave Background (CMB) fluctuations, a change of the dust spectral index and spinning dust emission. We show that very cold dust or CMB fluctuations are very unlikely explanations for the observed excess in these two galaxies. The excess in the LMC can be satisfactorily explained either by a change of the spectral index due to intrinsic properties of amorphous grains, or by spinning dust emission. In the SMC however, due to the importance of the excess, the dust grain model including TLS/DCD effects cannot reproduce the observed emission in a simple way. A possible solution was achieved with spinning dust emission, but many assumptions on the physical state of the interstellar medium had to be made. Further studies, using higher resolution data from Planck and Herschel, are needed to probe the origin of this observed submm-cm excess more definitely. Our study shows that the different possible origins will be best distinguished where the excess is the highest, as is the case in the SMC.Comment: 7 pages, 6 figures; accepted in A&

    Kondo resonance effect on persistent currents through a quantum dot in a mesoscopic ring

    Full text link
    The persistent current through a quantum dot inserted in a mesoscopic ring of length L is studied. A cluster representing the dot and its vicinity is exactly diagonalized and embedded into the rest of the ring. The Kondo resonance provides a new channel for the current to flow. It is shown that due to scaling properties, the persistent current at the Kondo regime is enhanced relative to the current flowing either when the dot is at resonance or along a perfect ring of same length. In the Kondo regime the current scales as L1/2L^{-1/2}, unlike the L1L^{-1} scaling of a perfect ring. We discuss the possibility of detection of the Kondo effect by means of a persistent current measurement.Comment: 11 pages, 3 Postscript figure

    Elucidating Drivers for Variations in the Explosive Human Immunodeficiency Virus Epidemic among People Who Inject Drugs in Pakistan

    Get PDF
    BACKGROUND: Pakistan’s explosive human immunodeficiency virus (HIV) epidemic among people who inject drugs (PWID) varies widely across cities. We evaluated possible drivers for these variations. METHODS: Multivariable regression analyses were undertaken using data from 5 national surveys among PWID (n = 18 467; 2005–2017) to determine risk factors associated with variations in city-level HIV prevalence. A dynamic HIV model was used to estimate the population-attributable fraction (PAF; proportion of HIV infections prevented over 10 years when that risk factor is removed) of these risk factors to HIV transmission and impact on HIV incidence of reducing their prevalence. RESULTS: Regression analyses suggested that city-level HIV prevalence is strongly associated with the prevalence of using professional injectors at last injection, heroin use in last month, and injecting ≥4 times per day. Through calibrating a model to these associations, we estimate that the 10-year PAFs of using professional injectors, heroin use, and frequent injecting are 45.3% (95% uncertainty interval [UI], 4.3%–79.7%), 45.9% (95% UI, 8.1%–78.4%), and 22.2% (95% UI, 2.0%–58.4%), respectively. Reducing to lowest city-level prevalences of using professional injectors (2.8%; median 89.9% reduction), heroin use (0.9%; median 91.2% reduction), and frequent injecting (0.1%; median 91.8% reduction) in 2020 reduces overall HIV incidence by 52.7% (95% UI, 6.1%–82.0%), 53.0% (95% UI, 11.3%–80.2%), and 28.1% (95% UI, 2.7%–66.6%), respectively, over 10 years. CONCLUSIONS: Interventions should focus on these risk factors to control Pakistan’s explosive HIV epidemic among PWID, including a concomitant expansion of high-coverage needle/syringe provision, opioid substitution therapy, and antiretroviral therapy

    Resolving the complexity of the human genome using single-molecule sequencing

    Get PDF
    The human genome is arguably the most complete mammalian reference assembly, yet more than 160 euchromatic gaps remain and aspects of its structural variation remain poorly understood ten years after its completion. To identify missing sequence and genetic variation, here we sequence and analyse a haploid human genome (CHM1) using single-molecule, real-time DNA sequencing. We close or extend 55% of the remaining interstitial gaps in the human GRCh37 reference genome - 78% of which carried long runs of degenerate short tandem repeats, often several kilobases in length, embedded within (G+C)-rich genomic regions. We resolve the complete sequence of 26,079 euchromatic structural variants at the base-pair level, including inversions, complex insertions and long tracts of tandem repeats. Most have not been previously reported, with the greatest increases in sensitivity occurring for events less than 5 kilobases in size. Compared to the human reference, we find a significant insertional bias (3:1) in regions corresponding to complex insertions and long short tandem repeats. Our results suggest a greater complexity of the human genome in the form of variation of longer and more complex repetitive DNA that can now be largely resolved with the application of this longer-read sequencing technology
    corecore