111 research outputs found

    Is Spending Money on Others Good for Your Heart?

    Get PDF
    Objective: Does spending money on others (prosocial spending) improve the cardiovascular health of community-dwelling older adults diagnosed with high blood pressure? Method: In Study 1, 186 older adults diagnosed with high blood pressure participating in the Midlife in the U.S. Study (MIDUS) were examined. In Study 2, 73 older adults diagnosed with high blood pressure were assigned to spend money on others or to spend money on themselves. Results: In Study 1, the more money people spent on others, the lower their blood pressure was 2 years later. In Study 2, participants who were assigned to spend money on others for 3 consecutive weeks subsequently exhibited lower systolic and diastolic blood pressure compared to participants assigned to spend money on themselves. The magnitude of these effects was comparable to the effects of interventions such as antihypertensive medication or exercise. Conclusions: Together, these findings suggest that spending money on others shapes cardiovascular health, thereby providing a pathway by which prosocial behavior improves physical health among at-risk older adults

    The origin of [C II] 157 μm emission in a five-component interstellar medium : the case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 mu m emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G(0). surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628. on angular scales of 500-600 pc. Both galaxies are part of the Herschel. key program. KINGFISH,. and are complemented by a large set of ancillary ground-and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    The Origin of [CII] 157 μm Emission in a Five-component Interstellar Medium: The Case of NGC 3184 and NGC 628

    Get PDF
    With its relatively low ionization potential, C+ can be found throughout the interstellar medium (ISM) and provides one of the main cooling channels of the ISM via the [C II] 157 μm emission. While the strength of the [C II] line correlates with the star formation rate, the contributions of the various gas phases to the [C II] emission on galactic scales are not well established. In this study we establish an empirical multi-component model of the ISM, including dense H II regions, dense photon dissociation regions (PDRs), the warm ionized medium (WIM), low density and G_0 surfaces of molecular clouds (SfMCs), and the cold neutral medium (CNM). We test our model on ten luminous regions within the two nearby galaxies NGC 3184 and NGC 628 on angular scales of 500–600 pc. Both galaxies are part of the Herschel key program KINGFISH, and are complemented by a large set of ancillary ground- and space-based data. The five modeled phases together reproduce the observed [C II] emission quite well, overpredicting the total flux slightly (about 45%) averaged over all regions. We find that dense PDRs are the dominating component, contributing 68% of the [C II] flux on average, followed by the WIM and the SfMCs, with mean contributions of about half of the contribution from dense PDRs, each. CNM and dense H II regions are only minor contributors with less than 5% each. These estimates are averaged over the selected regions, but the relative contributions of the various phases to the [C II] flux vary significantly between these regions

    Resolving the far-IR line deficit : photoelectric heating and far-IR line cooling in NGC 1097 and NGC 4559

    Get PDF
    The physical state of interstellar gas and dust is dependent on the processes which heat and cool this medium. To probe heating and cooling of the interstellar medium over a large range of infrared surface brightness, on sub-kiloparsec scales, we employ line maps of [C II] 158 mu m, [O I] 63 mu m, and [N II] 122 mu m in NGC 1097 and NGC 4559, obtained with the Photodetector Array Camera & Spectrometer on board Herschel. We matched new observations to existing Spitzer Infrared Spectrograph data that trace the total emission of polycyclic aromatic hydrocarbons (PAHs). We confirm at small scales in these galaxies that the canonical measure of photoelectric heating efficiency, ([C II] + [O I])/TIR, decreases as the far-infrared (far-IR) color, nu f(nu)(70 mu m) nu f(nu)(100 mu m), increases. In contrast, the ratio of far-IR cooling to total PAH emission, ([C II] + [O I])/PAH, is a near constant similar to 6% over a wide range of far-IR color, 0.5 , derived from models of the IR spectral energy distribution. Emission from regions that exhibit a line deficit is characterized by an intense radiation field, indicating that small grains are susceptible to ionization effects. We note that there is a shift in the 7.7/11.3 mu m PAH ratio in regions that exhibit a deficit in ([C II] + [O I])/PAH, suggesting that small grains are ionized in these environments

    The Origins of [C II] Emission in Local Star-forming Galaxies

    Get PDF
    The [CII] 158um fine-structure line is the brightest emission line observed in local star-forming galaxies. As a major coolant of the gas-phase interstellar medium, [CII] balances the heating, including that due to far-ultraviolet photons, which heat the gas via the photoelectric effect. However, the origin of [CII] emission remains unclear, because C+ can be found in multiple phases of the interstellar medium. Here we measure the fractions of [CII] emission originating in the ionized and neutral gas phases of a sample of nearby galaxies. We use the [NII] 205um fine-structure line to trace the ionized medium, thereby eliminating the strong density dependence that exists in the ratio of [CII]/[NII] 122um. Using the FIR [CII] and [NII] emission detected by the KINGFISH and Beyond the Peak Herschel programs, we show that 60-80% of [CII] emission originates from neutral gas. We find that the fraction of [CII] originating in the neutral medium has a weak dependence on dust temperature and the surface density of star formation, and a stronger dependence on the gas-phase metallicity. In metal-rich environments, the relatively cooler ionized gas makes substantially larger contributions to total [CII] emission than at low abundance, contrary to prior expectations. Approximate calibrations of this metallicity trend are provided

    The Physical Drivers and Observational Tracers of CO-to-H2 Conversion Factor Variations in Nearby Barred Galaxy Centers

    Get PDF
    The CO-to-H-2 conversion factor (alpha CO) is central to measuring the amount and properties of molecular gas. It is known to vary with environmental conditions, and previous studies have revealed lower alpha CO in the centers of some barred galaxies on kiloparsec scales. To unveil the physical drivers of such variations, we obtained Atacama Large Millimeter/submillimeter Array bands (3), (6), and (7) observations toward the inner similar to 2 kpc of NGC 3627 and NGC 4321 tracing (CO)-C-12, (CO)-C-13, and (CO)-O-18 lines on similar to 100 pc scales. Our multiline modeling and Bayesian likelihood analysis of these data sets reveal variations of molecular gas density, temperature, optical depth, and velocity dispersion, which are among the key drivers of aCO. The central 300 pc nuclei in both galaxies show strong enhancement of temperature Tk greater than or similar to 100 K and density n(H2) > 10(3) cm(-3). Assuming a CO-to-H-2 abundance of 3 x 10(-4), we derive 4-15 times lower alpha(CO) than the Galactic value across our maps, which agrees well with previous kiloparsec-scale measurements. Combining the results with our previous work on NGC 3351, we find a strong correlation of alpha(CO) with low-J (CO)-C-12 optical depths (tau(CO)), as well as an anticorrelation with Tk. The tCO correlation explains most of the aCO variation in the three galaxy centers, whereas changes in T-k influence alpha(CO) to second order. Overall, the observed line width and (CO)-C-12/(CO)-C-13 2-1 line ratio correlate with tCO variation in these centers, and thus they are useful observational indicators for alpha(CO) variation. We also test current simulation-based alpha(CO) prescriptions and find a systematic overprediction, which likely originates from the mismatch of gas conditions between our data and the simulations

    PHANGS-JWST First Results: Mapping the 3.3 μm Polycyclic Aromatic Hydrocarbon Vibrational Band in Nearby Galaxies with NIRCam Medium Bands

    Get PDF
    We present maps of the 3.3 mu m polycyclic aromatic hydrocarbon (PAH) emission feature in NGC 628, NGC 1365, and NGC 7496 as observed with the Near-Infrared Camera imager on JWST from the PHANGS-JWST Cycle 1 Treasury project. We create maps that isolate the 3.3 mu m PAH feature in the F335M filter (F335M(PAH)) using combinations of the F300M and F360M filters for removal of starlight continuum. This continuum removal is complicated by contamination of the F360M by PAH emission and variations in the stellar spectral energy distribution slopes between 3.0 and 3.6 mu m. We modify the empirical prescription from Lai et al. to remove the starlight continuum in our highly resolved galaxies, which have a range of starlight- and PAH-dominated lines of sight. Analyzing radially binned profiles of the F335M(PAH) emission, we find that between 5% and 65% of the F335M intensity comes from the 3.3 mu m feature within the inner 0.5 r (25) of our targets. This percentage systematically varies from galaxy to galaxy and shows radial trends within the galaxies related to each galaxy's distribution of stellar mass, interstellar medium, and star formation. The 3.3 mu m emission is well correlated with the 11.3 mu m PAH feature traced with the MIRI F1130W filter, as is expected, since both features arise from C-H vibrational modes. The average F335M(PAH)/F1130W ratio agrees with the predictions of recent models by Draine et al. for PAHs with size and charge distributions shifted toward larger grains with normal or higher ionization

    PHANGS-JWST First Results: A Combined HST and JWST Analysis of the Nuclear Star Cluster in NGC 628

    Get PDF
    We combine archival Hubble Space Telescope and new James Webb Space Telescope imaging data covering the ultraviolet to mid-infrared regime to morphologically analyze the nuclear star cluster (NSC) of NGC 628, a grand-design spiral galaxy. The cluster is located in a 200 pc × 400 pc cavity lacking both dust and gas. We find roughly constant values for the effective radius (r eff ∼ 5 pc) and ellipticity (ε ∼ 0.05), while the Sérsic index (n) and position angle (PA) drop from n ∼ 3 to ∼2 and PA ∼ 130° to 90°, respectively. In the mid-infrared, r eff ∼ 12 pc, ε ∼ 0.4, and n ∼ 1-1.5, with the same PA ∼ 90°. The NSC has a stellar mass of log 10 ( M ⋆ nsc / M ⊙ ) = 7.06 ± 0.31 , as derived through B − V, confirmed when using multiwavelength data, and in agreement with the literature value. Fitting the spectral energy distribution (SED), excluding the mid-infrared data, yields a main stellar population age of (8 ± 3) Gyr with a metallicity of Z = 0.012 ± 0.006. There is no indication of any significant star formation over the last few gigayears. Whether gas and dust were dynamically kept out or evacuated from the central cavity remains unclear. The best fit suggests an excess of flux in the mid-infrared bands, with further indications that the center of the mid-infrared structure is displaced with respect to the optical center of the NSC. We discuss five potential scenarios, none of them fully explaining both the observed photometry and structure

    Cellular Tropism, Population Dynamics, Host Range and Taxonomic Status of an Aphid Secondary Symbiont, SMLS (Sitobion miscanthi L Type Symbiont)

    Get PDF
    SMLS (Sitobion miscanthi L type symbiont) is a newly reported aphid secondary symbiont. Phylogenetic evidence from molecular markers indicates that SMLS belongs to the Rickettsiaceae and has a sibling relationship with Orientia tsutsugamushi. A comparative analysis of coxA nucleotide sequences further supports recognition of SMLS as a new genus in the Rickettsiaceae. In situ hybridization reveals that SMLS is housed in both sheath cells and secondary bacteriocytes and it is also detected in aphid hemolymph. The population dynamics of SMLS differ from those of Buchnera aphidicola and titer levels of SMLS increase in older aphids. A survey of 13 other aphids reveals that SMLS only occurs in wheat-associated species

    PHANGS-JWST First Results: Interstellar Medium Structure on the Turbulent Jeans Scale in Four Disk Galaxies Observed by JWST and the Atacama Large Millimeter/submillimeter Array

    Get PDF
    JWST/Mid-Infrared Instrument imaging of the nearby galaxies IC 5332, NGC 628, NGC 1365, and NGC 7496 from PHANGS reveals a richness of gas structures that in each case form a quasi-regular network of interconnected filaments, shells, and voids. We examine whether this multiscale network of structure is consistent with the fragmentation of the gas disk through gravitational instability. We use FilFinder to detect the web of filamentary features in each galaxy and determine their characteristic radial and azimuthal spacings. These spacings are then compared to estimates of the most Toomre-unstable length (a few kiloparsecs), the turbulent Jeans length (a few hundred parsecs), and the disk scale height (tens of parsecs) reconstructed using PHANGS-Atacama Large Millimeter/submillimeter Array observations of the molecular gas as a dynamical tracer. Our analysis of the four galaxies targeted in this work indicates that Jeans-scale structure is pervasive. Future work will be essential for determining how the structure observed in gas disks impacts not only the rate and location of star formation but also how stellar feedback interacts positively or negatively with the surrounding multiphase gas reservoir. © 2023
    corecore