113 research outputs found

    Vertical Carbon Nanotube Devices With Nanoscale Lengths Controlled Without Lithography

    Get PDF
    Vertical single-walled carbon nanotubes (vSWCNTs) are synthesized within highly ordered porous anodic alumina (PAA) templates supported on Si substrates. A process for obtaining thin-film PAA with long-range ordered nanopores is presented in this paper. Each nanopore contains at most one v-SWCNT that is supported by a dielectric and addressed by electrochemically formed Pd nanowire source contacts and evaporated Pd drain contacts. Characteristics of these completely vertical, two-terminal nanotube devices are presented. Control of the v-SWCNT length is demonstrated using a straightforward etching process with lengths of less than 100 nm achieved without the need for complex/expensive lithography. This effective nanoscale length control of highly ordered v-SWCNTs provides a practical basis for the realization of CNT-based nanoelectronics

    Room Temperature Device Performance of Electrodeposited InSb Nanowire Field Effect Transistors

    Get PDF
    In this study, InSb nanowires have been formed by electrodeposition and integrated into NW-FETs. NWs were formed in porous anodic alumina (PAA) templates, with the PAA pore diameter of approximately 100 nm defining the NW diameter. Following annealing at 125C and 420C respectively, the nanowires exhibited the zinc blende crystalline structure of InSb, as confirmed from x-ray diffraction and high resolution transmission electron microscopy. The annealed nanowires were used to fabricate nanowire field effect transistors (NW-FET) each containing a single NW with 500 nm channel length and gating through a 20nm SiO2 layer on a doped Si wafer. Following annealing of the NW-FETs at 300C for 10 minutes in argon ambient, transistor characteristics were observed with an ION ~ 40 uA (at VDS = 1V in a back-gate configuration), ION/IOFF ~ 16 - 20 in the linear regime of transistor operation and gd ~ 71uS. The field effect electron mobility extracted from the transconductance was ~1200 cm2 V-1 s-1 at room temperature. We report high on-current per nanowire compared with other reported NW-FETs with back-gate geometry and current saturation at low source-drain voltages. The device characteristics are not well described by long-channel MOSFET models, but can qualitatively be understood in terms of velocity saturation effects accounting for enhanced scatteringComment: 14 pages, 4 figure

    Cross-plane electronic and thermal transport properties of p-type La0.67Sr0.33MnO3/LaMnO3 perovskite oxide metal/semiconductor superlattices

    Get PDF
    Lanthanum strontium manganate (La0.67Sr0.33MnO3, i.e., LSMO)/lanthanum manganate (LaMnO3, i.e., LMO) perovskite oxide metal/semiconductor superlattices were investigated as a potential p-type thermoelectric material. Growth was performed using pulsed laser deposition to achieve epitaxial LSMO (metal)/LMO (p-type semiconductor) superlattices on (100)-strontium titanate (STO) substrates. The magnitude of the in-plane Seebeck coefficient of LSMO thin films (/K) is consistent with metallic behavior, while LMO thin films were p-type with a room temperature Seebeck coefficient of 140 mu V/K. Thermal conductivity measurements via the photo-acoustic (PA) technique showed that LSMO/LMO superlattices exhibit a room temperature cross-plane thermal conductivity (0.89 W/m.K) that is significantly lower than the thermal conductivity of individual thin films of either LSMO (1.60 W/m.K) or LMO (1.29 W/m.K). The lower thermal conductivity of LSMO/LMO superlattices may help overcome one of the major limitations of oxides as thermoelectrics. In addition to a low cross-plane thermal conductivity, a high ZT requires a high power factor (S-2 sigma). Cross-plane electrical transport measurements were carried out on cylindrical pillars etched in LSMO/LMO superlattices via inductively coupled plasma reactive ion etching. Cross-plane electrical resistivity data for LSMO/LMO superlattices showed a magnetic phase transition temperature (T-P) or metal-semiconductor transition at similar to 330 K, which is similar to 80K higher than the T-P observed for in-plane resistivity of LSMO, LMO, or LSMO/LMO thin films. The room temperature cross-plane resistivity (rho(c)) was found to be greater than the in-plane resistivity by about three orders of magnitude. The magnitude and temperature dependence of the cross-plane conductivity of LSMO/LMO superlattices suggests the presence of a barrier with the effective barrier height of similar to 300 meV. Although the magnitude of the cross-plane power factor is too low for thermoelectric applications by a factor of approximately 10(-4)-in part because the growth conditions chosen for this study yielded relatively high resistivity films-the temperature dependence of the resistivity and the potential for tuning the power factor by engineering strain, oxygen stoichiometry, and electronic band structure suggest that these epitaxial metal/semiconductor superlattices are deserving of further investigation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4754514

    Changing the academic culture: Valuing patents and commercialization toward tenure and career advancement

    Get PDF
    There is national and international recognition of the importance of innovation, technology transfer, and entrepreneurship for sustained economic revival. With the decline of industrial research laboratories in the United States, research universities are being asked to play a central role in our knowledge-centered economy by the technology transfer of their discoveries, innovations, and inventions. In response to this challenge, innovation ecologies at and around universities are starting to change. However, the change has been slow and limited. The authors believe this can be attributed partially to a lack of change in incentives for the central stakeholder, the faculty member. The authors have taken the position that universities should expand their criteria to treat patents, licensing, and commercialization activity by faculty as an important consideration for merit, tenure, and career advancement, along with publishing, teaching, and service. This position is placed in a historical context with a look at the history of tenure in the United States, patents, and licensing at universities, the current status of university tenure and career advancement processes, and models for the future

    Resonance-enhanced multiphoton ionization (REMPI) spectroscopy of p-chlorofluorobenzene

    Get PDF
    The S1 ← S0 (A ~ 1B2 ← X~ 1A1) electronic transition of para-chlorofluorobenzene has been investigated using resonance-enhanced multiphoton ionization (REMPI) spectroscopy. Assignment of the vibrational structure has been achieved by comparison with corresponding spectra of related molecules, via quantum chemical calculations, and via shifts in bands between the spectra of the 35Cl and 37Cl isotopologues. In addition, we have also partially reassigned a previously-published spectrum of para-dichlorobenzene

    Development, validation, and proof-of-concept implementation of a two-year risk prediction model for undiagnosed atrial fibrillation using common electronic health data (UNAFIED)

    Get PDF
    Background: Many patients with atrial fibrillation (AF) remain undiagnosed despite availability of interventions to reduce stroke risk. Predictive models to date are limited by data requirements and theoretical usage. We aimed to develop a model for predicting the 2-year probability of AF diagnosis and implement it as proof-of-concept (POC) in a production electronic health record (EHR). Methods: We used a nested case-control design using data from the Indiana Network for Patient Care. The development cohort came from 2016 to 2017 (outcome period) and 2014 to 2015 (baseline). A separate validation cohort used outcome and baseline periods shifted 2 years before respective development cohort times. Machine learning approaches were used to build predictive model. Patients ≥ 18 years, later restricted to age ≥ 40 years, with at least two encounters and no AF during baseline, were included. In the 6-week EHR prospective pilot, the model was silently implemented in the production system at a large safety-net urban hospital. Three new and two previous logistic regression models were evaluated using receiver-operating characteristics. Number, characteristics, and CHA2DS2-VASc scores of patients identified by the model in the pilot are presented. Results: After restricting age to ≥ 40 years, 31,474 AF cases (mean age, 71.5 years; female 49%) and 22,078 controls (mean age, 59.5 years; female 61%) comprised the development cohort. A 10-variable model using age, acute heart disease, albumin, body mass index, chronic obstructive pulmonary disease, gender, heart failure, insurance, kidney disease, and shock yielded the best performance (C-statistic, 0.80 [95% CI 0.79-0.80]). The model performed well in the validation cohort (C-statistic, 0.81 [95% CI 0.8-0.81]). In the EHR pilot, 7916/22,272 (35.5%; mean age, 66 years; female 50%) were identified as higher risk for AF; 5582 (70%) had CHA2DS2-VASc score ≥ 2. Conclusions: Using variables commonly available in the EHR, we created a predictive model to identify 2-year risk of developing AF in those previously without diagnosed AF. Successful POC implementation of the model in an EHR provided a practical strategy to identify patients who may benefit from interventions to reduce their stroke risk

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
    corecore