22 research outputs found

    Self-assembly of pericentriolar material in interphase cells lacking centrioles

    Get PDF
    The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole18 independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on Îł-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152 or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus25 end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement

    Proteasome subunit variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress

    Get PDF
    The ubiquitin–proteasome system degrades ubiquitin‐modified proteins to maintain protein homeostasis and to control signalling. Whole‐genome sequencing of patients with severe deafness and early‐onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient\u27s fibroblasts was however unaffected. Nevertheless, patient\u27s cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient\u27s fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient\u27s cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development

    Breeding patterns and cultivated beets origins by genetic diversity and linkage disequilibrium analyses

    No full text
    International audienceGenetic diversity in worldwide population of beets is strongly affected by the domestication history, and the comparison of linkage disequilibrium in worldwide and elite populations highlights strong selection pressure. Genetic relationships and linkage disequilibrium (LD) were evaluated in a set of 2035 worldwide beet accessions and in another of 1338 elite sugar beet lines, using 320 and 769 single nucleotide polymorphisms, respectively. The structures of the populations were analyzed using four different approaches. Within the worldwide population, three of the methods gave a very coherent picture of the population structure. Fodder beet and sugar beet accessions were grouped together, separated from garden beets and sea beets, reflecting well the origins of beet domestication. The structure of the elite panel, however, was less stable between clustering methods, which was probably because of the high level of genetic mixing in breeding programs. For the linkage disequilibrium analysis, the usual measure (r (2)) was used, and compared with others that correct for population structure and relatedness (r (S) (2) , r (V) (2) , r (VS) (2) ). The LD as measured by r (2) persisted beyond 10 cM within the elite panel and fell below 0.1 after less than 2 cM in the worldwide population, for almost all chromosomes. With correction for relatedness, LD decreased under 0.1 by 1 cM for almost all chromosomes in both populations, except for chromosomes 3 and 9 within the elite panel. In these regions, the larger extent of LD could be explained by strong selection pressure

    The 5P program, personalized and participatory primary prevention pathway: Rational and design of a clinical trial in general practice

    No full text
    The aging of the population is leading to an increase in the number of people with loss of autonomy, placing a strain on the health care system. Its prevention at early stages such as the frailty stage would allow an improvement in the quality of life of seniors while limiting health care expenses. The “Atout Age” prevention program set up by the health public authorities of Reunion Island for retired people and the new frailty assessment tools based on mathematical machine learning algorithms could improve the ambulatory care of senior citizens. At present, referral care remains hospital with comprehensive geriatric assessment and there is a lack of evidence of the effectiveness of a prevention pathway for loss of autonomy in primary care. For these reasons, the 5P program “Personalized and Participative Primary Prevention Pathway” has been started in order to obtain scientific evidence.In this article, we present the objectives, design and first results, used in the 5P program up to the implementation of a clinical trial in general practice.The program is articulated in 3 phases. A first phase to evaluate the acceptability of innovative screening tools for frailty. A second pilot phase evaluates the feasibility of a large-scale ambulatory clinical trial in general practice. The last phase described in this article, is a multisite, pseudo-randomized, controlled clinical trial measuring the impact of the “Atout Age” workshops on the physical performance and the quality of life of seniors compared with their usual ambulatory follow-up

    A comparison of high-throughput SARS-CoV-2 sequencing methods from nasopharyngeal samples

    No full text
    International audienceAbstract The COVID-19 pandemic caused by the new Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) continues to threaten public health and burden healthcare systems worldwide. Whole SARS-CoV-2 genome sequencing has become essential for epidemiological monitoring and identification of new variants, which could represent a risk of increased transmissibility, virulence, or resistance to vaccines or treatment. Different next-generation sequencing approaches are used in SARS-CoV-2 sequencing, although with different ability to provide whole genome coverage without gaps and to reliably detect new variants. In this study, we compared the performance of three target enrichment methods (two multiplex amplification methods and one hybridization capture) using nasopharyngeal swabs from infected individuals. We applied these target enrichment methods to the same set of nasopharyngeal samples (N = 93) in high-throughput mode. SARS-CoV-2 genome was obtained using short-read next-generation sequencing. We observed that each method has some advantages, such as high mapping rate (CleanPlex and COVIDSeq) or absence of systematic variant calling error (SureSelect) as well as their limitations such as suboptimal uniformity of coverage (CleanPlex), high cost (SureSelect) or supply shortages (COVIDSeq). Nevertheless, each of the three target enrichment kits tested in this study yielded acceptable results of whole SARS-CoV-2 genome sequencing and either of them can therefore be used in prospective programs of genomic surveillance of SARS-CoV-2. Genomic surveillance will be crucial to overcoming the ongoing pandemic of COVID-19, despite its successive waves and continually emerging variants

    Heterogeneity of SARS-CoV-2 virus produced in cell culture revealed by shotgun proteomics and supported by genome sequencing

    No full text
    International audienceCOVID-19 is the most disturbing pandemic of the past hundred years. Its causative agent, the SARS-CoV-2 virus, has been the subject of an unprecedented investigation to characterize its molecular structure and intimate functioning. While markers for its detection have been proposed and several diagnostic methodologies developed, its propensity to evolve and evade diagnostic tools and the immune response is of great concern. The recent spread of new variants with increased infectivity requires even more attention. Here, we document how shotgun proteomics can be useful for rapidly monitoring the evolution of the SARS-CoV-2 virus. We evaluated the heterogeneity of purified SARS-CoV-2 virus obtained after culturing in the Vero E6 cell line. We found that cell culture induces significant changes that are translated at the protein level, such changes being detectable by tandem mass spectrometry. Production of viral particles requires careful quality control which can be easily performed by shotgun proteomics. Although considered relatively stable so far, the SARS-CoV-2 genome turns out to be prone to frequent variations. Therefore, the sequencing of SARS-CoV-2 variants from patients reporting only the consensus genome after its amplification would deserve more attention and could benefit from more in-depth analysis of low level but crystal-clear signals, as well as complementary and rapid analysis by shotgun proteomics

    Self-assembly of pericentriolar material in interphase cells lacking centrioles

    No full text
    The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole18 independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on Îł-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152 or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus25 end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement

    The lncRNA 44s2 Study Applicability to the Design of 45-55 Exon Skipping Therapeutic Strategy for DMD

    No full text
    International audienceIn skeletal muscle, long noncoding RNAs (lncRNAs) are involved in dystrophin protein stabilization but also in the regulation of myocytes proliferation and differentiation. Hence, they could represent promising therapeutic targets and/or biomarkers for Duchenne and Becker muscular dystrophy (DMD/BMD). DMD and BMD are X-linked myopathies characterized by a progressive muscular dystrophy with or without dilatative cardiomyopathy. Two-thirds of DMD gene mutations are represented by deletions, and 63% of patients carrying DMD deletions are eligible for 45 to 55 multi-exons skipping (MES), becoming BMD patients (BMDΔ45-55). We analyzed the genomic lncRNA presence in 38 BMDΔ45-55 patients and characterized the lncRNA localized in introns 44 and 55 of the DMD gene. We highlighted that all four lncRNA are differentially expressed during myogenesis in immortalized and primary human myoblasts. In addition, the lncRNA44s2 was pointed out as a possible accelerator of differentiation. Interestingly, lncRNA44s expression was associated with a favorable clinical phenotype. These findings suggest that lncRNA44s2 could be involved in muscle differentiation process and become a potential disease progression biomarker. Based on these results, we support MES45-55 therapy and propose that the design of the CRISPR/Cas9 MES45-55 assay consider the lncRNA sequences bordering the exonic 45 to 55 deletion

    WGS Revealed Novel BBS5 Pathogenic Variants, Missed by WES, Causing Ciliary Structure and Function Defects

    No full text
    Bardet–Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein’s impact was confirmed on the patient’s cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients’ genetic explorations as well as functional tests to assess a variant’s pathogenicity

    Performance comparison of three DNA extraction kits on human whole-exome data from formalin-fixed paraffin-embedded normal and tumor samples

    No full text
    <div><p>Next-generation sequencing (NGS) studies are becoming routinely used for the detection of novel and clinically actionable DNA variants at a pangenomic scale. Such analyses are now used in the clinical practice to enable precision medicine. Formalin-fixed paraffin-embedded (FFPE) tissues are still one of the most abundant source of cancer clinical specimen, unfortunately this method of preparation is known to degrade DNA and therefore compromise subsequent analysis. Some studies have reported that variant detection can be performed on FFPE samples sequenced with NGS techniques, but few or none have done an in-depth coverage analysis and compared the influence of different state-of-the-art FFPE DNA extraction kits on the quality of the variant calling. Here, we generated 42 human whole-exome sequencing data sets from fresh-frozen (FF) and FFPE samples. These samples include normal and tumor tissues from two different organs (liver and colon), that we extracted with three different FFPE extraction kits (QIAamp DNA FFPE Tissue kit and GeneRead DNA FFPE kit from Qiagen, Maxwell<sup>ℱ</sup> RSC DNA FFPE Kit from Promega). We determined the rate of concordance of called variants between matched FF and FFPE samples on all common variants (representing at least 86% of the total number of variants for SNVs). The concordance rate is very high between all matched FF / FFPE pairs, with equivalent values for the three kits we analyzed. On the other hand, when looking at the difference between the total number of variants in FF and FFPE, we find a significant variation for the three different FFPE DNA extraction kits. Coverage analysis shows that FFPE samples have less good indicators than FF samples, yet the coverage quality remains above accepted thresholds. We detect limited but statistically significant variations in coverage indicator values between the three FFPE extraction kits. Globally, the GeneRead and QIAamp kits have better variant calling and coverage indicators than the Maxwell kit on the samples used in this study, although this kit performs better on some indicators and has advantages in terms of practical usage. Taken together, our results confirm the potential of FFPE samples analysis for clinical genomic studies, but also indicate that the choice of a FFPE DNA extraction kit should be done with careful testing and analysis beforehand in order to maximize the accuracy of the results.</p></div
    corecore