43 research outputs found
Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. To date, very high-energy (VHE, > 100 GeV) emission has been observed from this source either during long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We characterize and model the source in a broadband context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray, and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modeled within an external Compton scenario with a stationary emission region through which plasma and magnetic fields are flowing. We also perform the emission-model-independent calculations of the maximum absorption in the broad line region (BLR) using two different models. Results. The MAGIC telescopes collected 75 hr of data during times when the Fermi-LAT flux measured above 1 GeV was below 3? × 10 -8 ? cm -2 ? s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5¿) VHE gamma-ray emission at the level of (4.27 ± 0.61 stat ) × 10 -12 ? cm -2 ? s -1 above 150 GeV, a factor of 80 lower than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broadband emission is compatible with the external Compton scenario assuming a large emission region located beyond the BLR. For the first time the gamma-ray data allow us to place a limit on the location of the emission region during a low gamma-ray state of a FSRQ. For the used model of the BLR, the 95% confidence level on the location of the emission region allows us to place it at a distance > 74% of the outer radius of the BLR. © ESO 2018.The financial support of the German BMBF and MPG, the Italian INFN and INAF, the Swiss National Fund SNF, the ERDF under the Spanish MINECO (FPA2015-69818-P, FPA2012-36668, FPA2015-68378-P, FPA2015-69210-C6-2-R, FPA2015-69210-C6-4-R, FPA2015-69210-C6-6-R, AYA2015-71042-P, AYA2016-76012-C3-1-P, ESP2015-71662-C2-2-P, CSD2009-00064), and the Japanese JSPS and MEXT is gratefully acknowledged. This work was also supported by the Spanish Centro de Exce-lencia “Severo Ochoa” SEV-2012-0234 and SEV-2015-0548, and Unidad de Excelencia “María de Maeztu” MDM-2014-0369, by the Croatian Science Foundation (HrZZ) Project IP-2016-06-9782 and the University of Rijeka Project 13.12.1.3.02, by the DFG Collaborative Research Centers SFB823/C4 and SFB876/C3, the Polish National Research Centre grant UMO-2016/22/M/ST9/00382, and by the Brazilian MCTIC, CNPq and FAPERJ. IA acknowledges support from a Ramón y Cajal grant of the Ministerio de Economía, Industria, y Competitividad (MINECO) of Spain. Acquisition and reduction of the POLAMI and MAPCAT data was supported in part by MINECO through grants AYA2010-14844, AYA2013-40825-P, and AYA2016-80889-P, and by the Regional Government of Andalucía through grant P09-FQM-4784.Peer Reviewe
MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012
Aims. Amongst more than fifty blazars detected in very high energy (VHE, E> 100 GeV) γ rays, only three belong to the subclass of flat spectrum radio quasars (FSRQs). The detection of FSRQs in the VHE range is challenging, mainly because of their soft spectra in the GeV-TeV regime. MAGIC observed PKS 1510−089 (z = 0.36) starting 2012 February 3 until April 3 during a high activity state in the high energy (HE, E> 100 MeV) γ-ray band observed by AGILE and Fermi. MAGIC observations result in the detection of a source with significance of 6.0 standard deviations (σ). We study the multi-frequency behaviour of the source at the epoch of MAGIC observation, collecting quasi-simultaneous data at radio and optical (GASP-WEBT and F-Gamma collaborations, REM, Steward, Perkins, Liverpool, OVRO, and VLBA telescopes), X-ray (Swift satellite), and HE γ-ray frequencies.
Methods. We study the VHE γ-ray emission, together with the multi-frequency light curves, 43 GHz radio maps, and spectral energy distribution (SED) of the source. The quasi-simultaneous multi-frequency SED from the millimetre radio band to VHE γ rays is modelled with a one-zone inverse Compton model. We study two different origins of the seed photons for the inverse Compton scattering, namely the infrared torus and a slow sheath surrounding the jet around the Very Long Baseline Array (VLBA) core.
Results. We find that the VHE γ-ray emission detected from PKS 1510−089 in 2012 February-April agrees with the previous VHE observations of the source from 2009 March-April. We find no statistically significant variability during the MAGIC observations on daily, weekly, or monthly time scales, while the other two known VHE FSRQs (3C 279 and PKS 1222+216) have shown daily scale to sub-hour variability. The γ-ray SED combining AGILE, Fermi and MAGIC data joins smoothly and shows no hint of a break. The multi-frequency light curves suggest a common origin for the millimetre radio and HE γ-ray emission, and the HE γ-ray flaring starts when the new component is ejected from the 43 GHz VLBA core and the studied SED models fit the data well. However, the fast HE γ-ray variability requires that within the modelled large emitting region, more compact regions must exist. We suggest that these observed signatures would be most naturally explained by a turbulent plasma flowing at a relativistic speed down the jet and crossing a standing conical shock
The variability patterns of the TeV blazar PG 1553+113 from a decade of MAGIC and multi-band observations
PG 1553+113 is one of the few blazars with a convincing quasi-periodic
emission in the gamma-ray band. The source is also a very high-energy (VHE;
>100 GeV) gamma-ray emitter. To better understand its properties and identify
the underlying physical processes driving its variability, the MAGIC
Collaboration initiated a multiyear, multiwavelength monitoring campaign in
2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the
MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The
analysis presented in this paper uses data until 2017 and focuses on the
characterization of the variability. The gamma-ray data show a (hint of a)
periodic signal compatible with literature, but the X-ray and VHE gamma-ray
data do not show statistical evidence for a periodic signal. In other bands,
the data are compatible with the gamma-ray period, but with a relatively high
p-value. The complex connection between the low and high-energy emission and
the non-monochromatic modulation and changes in flux suggests that a simple
one-zone model is unable to explain all the variability. Instead, a model
including a periodic component along with multiple emission zones is required.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society. 19 pages, 9 figures. Corresponding authors: Elisa Prandini, Antonio
Stamerra, Talvikki Hovatt
The variability patterns of the TeV blazar PG 1553 + 113 from a decade of MAGIC and multiband observations
PG 1553 + 113 is one of the few blazars with a convincing quasi-periodic emission in the gamma-ray band. The source is also a very high energy (VHE; >100 GeV) gamma-ray emitter. To better understand its properties and identify the underlying physical processes driving its variability, the MAGIC Collaboration initiated a multiyear, multiwavelength monitoring campaign in 2015 involving the OVRO 40-m and Medicina radio telescopes, REM, KVA, and the MAGIC telescopes, Swift and Fermi satellites, and the WEBT network. The analysis presented in this paper uses data until 2017 and focuses on the characterization of the variability. The gamma-ray data show a (hint of a) periodic signal compatible with literature, but the X-ray and VHE gamma-ray data do not show statistical evidence for a periodic signal. In other bands, the data are compatible with the gamma-ray period, but with a relatively high p-value. The complex connection between the low- and high-energy emission and the non-monochromatic modulation and changes in flux suggests that a simple one-zone model is unable to explain all the variability. Instead, a model including a periodic component along with multiple emission zones is required
Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017
Context. PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. To date, very high-energy (VHE, >100 GeV) emission has been observed from this source either during long high states of optical and GeV activity or during short flares.Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We characterize and model the source in a broadband context, which would provide a baseline over which high states and flares could be better understood.Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray, and gammaray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modeled within an external Compton scenario with a stationary emission region through which plasma and magnetic fields are flowing. We also perform the emissio-model-independent calculations of the maximum absorption in the broad line region (BLR) using two different models.Results. The MAGIC telescopes collected 75 hr of data during times when the Fermi-LAT flux measured above 1 GeV was below 3 x10(-8)cm(-2) s(-1) , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.50-sigma ) VHE gamma-ray emission at the level of (4.27 +/- 0.61(stat)) x 10(-12) cm(-2) s(-1) above 150 GeV, a factor of 80 lower than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broadband emission is compatible with the external Compton scenario assuming a large emission region located beyond the BLR. For the first time the gamma-ray data allow us to place a limit on the location of the emission region during a low gamma ray state of a FSRQ. For the used model of the BLR, the 95% confidence level on the location of the emission region allows us to place it at a distance >74% of the outer radius of the BLR