38 research outputs found

    Journal Staff

    Get PDF
    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs(mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida

    Evolution of nonstop, no-go and nonsense-mediated mRNA decay and their termination factor-derived components

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Members of the eukaryote/archaea specific eRF1 and eRF3 protein families have central roles in translation termination. They are also central to various mRNA surveillance mechanisms, together with the eRF1 paralogue Dom34p and the eRF3 paralogues Hbs1p and Ski7p. We have examined the evolution of eRF1 and eRF3 families using sequence similarity searching, multiple sequence alignment and phylogenetic analysis.</p> <p>Results</p> <p>Extensive BLAST searches confirm that Hbs1p and eRF3 are limited to eukaryotes, while Dom34p and eRF1 (a/eRF1) are universal in eukaryotes and archaea. Ski7p appears to be restricted to a subset of <it>Saccharomyces </it>species. Alignments show that Dom34p does not possess the characteristic class-1 RF minidomains GGQ, NIKS and YXCXXXF, in line with recent crystallographic analysis of Dom34p. Phylogenetic trees of the protein families allow us to reconstruct the evolution of mRNA surveillance mechanisms mediated by these proteins in eukaryotes and archaea.</p> <p>Conclusion</p> <p>We propose that the last common ancestor of eukaryotes and archaea possessed Dom34p-mediated no-go decay (NGD). This ancestral Dom34p may or may not have required a trGTPase, mostly like a/eEF1A, for its delivery to the ribosome. At an early stage in eukaryotic evolution, eEF1A was duplicated, giving rise to eRF3, which was recruited for translation termination, interacting with eRF1. eRF3 evolved nonsense-mediated decay (NMD) activity either before or after it was again duplicated, giving rise to Hbs1p, which we propose was recruited to assist eDom34p in eukaryotic NGD. Finally, a third duplication within ascomycete yeast gave rise to Ski7p, which may have become specialised for a subset of existing Hbs1p functions in non-stop decay (NSD). We suggest Ski7p-mediated NSD may be a specialised mechanism for counteracting the effects of increased stop codon read-through caused by prion-domain [PSI+] mediated eRF3 precipitation.</p

    The origins of species richness in the Hymenoptera: insights from a family-level supertree

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The order Hymenoptera (bees, ants, wasps, sawflies) contains about eight percent of all described species, but no analytical studies have addressed the origins of this richness at family-level or above. To investigate which major subtaxa experienced significant shifts in diversification, we assembled a family-level phylogeny of the Hymenoptera using supertree methods. We used sister-group species-richness comparisons to infer the phylogenetic position of shifts in diversification.</p> <p>Results</p> <p>The supertrees most supported by the underlying input trees are produced using matrix representation with compatibility (MRC) (from an all-in and a compartmentalised analysis). Whilst relationships at the tips of the tree tend to be well supported, those along the backbone of the tree (e.g. between Parasitica superfamilies) are generally not. Ten significant shifts in diversification (six positive and four negative) are found common to both MRC supertrees. The Apocrita (wasps, ants, bees) experienced a positive shift at their origin accounting for approximately 4,000 species. Within Apocrita other positive shifts include the Vespoidea (vespoid wasps/ants containing 24,000 spp.), Anthophila + Sphecidae (bees/thread-waisted wasps; 22,000 spp.), Bethylidae + Chrysididae (bethylid/cuckoo wasps; 5,200 spp.), Dryinidae (dryinid wasps; 1,100 spp.), and Proctotrupidae (proctotrupid wasps; 310 spp.). Four relatively species-poor families (Stenotritidae, Anaxyelidae, Blasticotomidae, Xyelidae) have undergone negative shifts. There are some two-way shifts in diversification where sister taxa have undergone shifts in opposite directions.</p> <p>Conclusions</p> <p>Our results suggest that numerous phylogenetically distinctive radiations contribute to the richness of large clades. They also suggest that evolutionary events restricting the subsequent richness of large clades are common. Problematic phylogenetic issues in the Hymenoptera are identified, relating especially to superfamily validity (e.g. "Proctotrupoidea", "Mymarommatoidea"), and deeper apocritan relationships. Our results should stimulate new functional studies on the causes of the diversification shifts we have identified. Possible drivers highlighted for specific adaptive radiations include key anatomical innovations, the exploitation of rich host groups, and associations with angiosperms. Low richness may have evolved as a result of geographical isolation, specialised ecological niches, and habitat loss or competition.</p

    Lateral Transfer of an EF-1α Gene Origin and Evolution of the Large Subunit of ATP Sulfurylase in Eubacteria

    Get PDF
    AbstractIt is generally accepted that new genes arise via duplication and functional divergence of existing genes, in accordance with Ohno's model [1], now called “Mutation During Redundancy,” or MDR [2]. In this model, one of the two gene copies is free to acquire novel (although likely related) activities through mutation, since only one copy is required for its original function. However, duplication within a genome is not the only process that might give rise to this situation: acquisition of a functionally redundant gene by lateral gene transfer (LGT) could also initiate the MDR process. Here we describe a probable instance, involving LGT of an archaeal or eukaryotic elongation factor 1α (EF-1α) gene. The large subunit of ATP sulfurylase (CysN or the N-terminal portion of NodQ), found mainly in proteobacteria, is clearly related to translation elongation factors [3, 4]. However, our analyses show that cysN arose from an EF-1α gene initially acquired by LGT, not from a within-genome duplication of the resident EF-Tu gene. To our knowledge, this is the first unequivocal case of LGT followed by functional modification to be described; this mechanism could be a potentially important force in establishing genes with novel functions in genomes

    New Classification of the Dictyostelids

    Get PDF
    Traditional morphology-based taxonomy of dictyostelids is rejected by molecular phylogeny. A new classification is presented based on monophyletic entities with consistent and strong molecular phylogenetic support and that are, as far as possible, morphologically recognizable. All newly named clades are diagnosed with small subunit ribosomal RNA (18S rRNA) sequence signatures plus morphological synapomorphies where possible. The two major molecular clades are given the rank of order, as Acytosteliales ord. nov. and Dictyosteliales. The two major clades within each of these orders are recognized and given the rank of family as, respectively, Acytosteliaceae and Cavenderiaceae fam. nov. in Acytosteliales, and Dictyosteliaceae and Raperosteliaceae fam. nov. in Dictyosteliales. Twelve genera are recognized: Cavenderia gen. nov. in Cavenderiaceae, Acytostelium, Rostrostelium gen. nov. and Heterostelium gen. nov. in Acytosteliaceae, Tieghemostelium gen. nov., Hagiwaraea gen. nov., Raperostelium gen. nov. and Speleostelium gen. nov. in Raperosteliaceae, and Dictyostelium and Polysphondylium in Dictyosteliaceae. The polycephalum complex is treated as Coremiostelium gen. nov. (not assigned to family) and the polycarpum complex as Synstelium gen. nov. (not assigned to order and family). Coenonia, which may not be a dictyostelid, is treated as a genus incertae sedis. Eighty-eight new combinations are made at species and variety level, and Dictyostelium ammophilum is validated

    High expression of antiviral proteins in mucosa from individuals exhibiting resistance to human immunodeficiency virus

    Get PDF
    ABSTARCT: Several soluble factors have been reported to have the capacity of inhibiting HIV replication at different steps of the virus life cycle, without eliminating infected cells and through enhancement of specific cellular mechanisms. Yet, it is unclear if these antiviral factors play a role in the protection from HIV infection or in the control of viral replication. Here we evaluated two cohorts: i) one of 58 HIV-exposed seronegative individuals (HESNs) who were compared with 59 healthy controls (HCs), and ii) another of 13 HIV-controllers who were compared with 20 HIV-progressors. Peripheral blood, oral and genital mucosa and gut-associated lymphoid tissue (GALT) samples were obtained to analyze the mRNA expression of ELAFIN, APOBEC3G, SAMHD1, TRIM5α, RNase 7 and SerpinA1 using real-time PCR. RESULTS: HESNs exhibited higher expression of all antiviral factors in peripheral blood mononuclear cells (PBMCs), oral or genital mucosa when compared with HCs. Furthermore, HIV-controllers exhibited higher levels of SerpinA1 in GALT. CONCLUSIONS: These findings suggest that the activity of these factors is compartmentalized and that these proteins have a predominant role depending on the tissue to avoid the infection, reduce the viral load and modulate the susceptibility to HIV infection

    An expanded phylogeny of social amoebas (Dictyostelia) shows increasing diversity and new morphological patterns

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Social Amoebae or Dictyostelia are eukaryotic microbes with a unique life cycle consisting of both uni- and multicellular stages. They have long fascinated molecular, developmental and evolutionary biologists, and <it>Dictyostelium discoideum </it>is now one of the most widely studied eukaryotic microbial models. The first molecular phylogeny of Dictyostelia included most of the species known at the time and suggested an extremely deep taxon with a molecular depth roughly equivalent to Metazoa. The group was also shown to consist of four major clades, none of which correspond to traditional genera. Potential morphological justification was identified for three of the four major groups, on the basis of which tentative names were assigned.</p> <p>Results</p> <p>Over the past four years, the Mycetozoan Global Biodiversity Survey has identified many new isolates that appear to be new species of Dictyostelia, along with numerous isolates of previously described species. We have determined 18S ribosomal RNA gene sequences for all of these new isolates. Phylogenetic analyses of these data show at least 50 new species, and these arise from throughout the dictyostelid tree breaking up many previously isolated long branches. The resulting tree now shows eight well-supported major groups instead of the original four. The new species also expand the known morphological diversity of the previously established four major groups, violating nearly all previously suggested deep morphological patterns.</p> <p>Conclusions</p> <p>A greatly expanded phylogeny of Dictyostelia now shows even greater morphological plasticity at deep taxonomic levels. In fact, there now seem to be no obvious deep evolutionary trends across the group. However at a finer level, patterns in morphological character evolution are beginning to emerge. These results also suggest that there is a far greater diversity of Dictyostelia yet to be discovered, including novel morphologies.</p

    Evolution and diversity of dictyostelid social amoebae

    Get PDF
    Dictyostelid social amoebae are a large and ancient group of soil microbes with an unusual multicellular stage in their life cycle. Taxonomically, they belong to the eukaryotic supergroup Amoebozoa, the sister group to Opisthokonta (animals + fungi). Roughly half of the ~150 known dictyostelid species were discovered during the last five years and probably many more remain to be found. The traditional classification system of Dictyostelia was completely overturned by cladistic analyses and molecular phylogenies of the past six years. As a result, it now appears that, instead of three major divisions there are eight, none of which correspond to traditional higher-level taxa. In addition to the widely studied Dictyostelium discoideum, there are now efforts to develop model organisms and complete genome sequences for each major group. Thus Dictyostelia is becoming an excellent model for both practical, medically related research and for studying basic principles in cell-cell communication and developmental evolution. In this review we summarize the latest information about their life cycle, taxonomy, evolutionary history, genome projects and practical importance. © 2011 Elsevier GmbH.MR is supported by a Marie Curie Intra European Fellowship within the 7th European Community Framework Programme (PIEF-GA-2009-236501). RE is supported by grant BFU2009-09050 from the Spanish Ministerio de Ciencia e Innovación. SLB is supported by grants from the Swedish Research Council (VetenskaprÄdet).Peer Reviewe

    Evolution of protein indels in plants, animals and fungi

    Get PDF
    Background: Insertions/deletions (indels) in protein sequences are useful as drug targets, protein structure predictors, species diagnostics and evolutionary markers. However there is limited understanding of indel evolutionary patterns. We sought to characterize indel patterns focusing first on the major groups of multicellular eukaryotes. Results: Comparisons of complete proteomes from a taxonically broad set of primarily Metazoa, Fungi and Viridiplantae yielded 299 substantial (&gt;250aa) universal, single-copy (in-paralog only) proteins, from which 901 simple (present/absent) and 3,806 complex (multistate) indels were extracted. Simple indels are mostly small (1-7aa) with a most frequent size class of 1aa. However, even these simple looking indels show a surprisingly high level of hidden homoplasy (multiple independent origins). Among the apparently homoplasy-free simple indels, we identify 69 potential clade-defining indels (CDIs) that may warrant closer examination. CDIs show a very uneven taxonomic distribution among Viridiplante (13 CDIs), Fungi (40 CDIs), and Metazoa (0 CDIs). An examination of singleton indels shows an excess of insertions over deletions in nearly all examined taxa. This excess averages 2.31 overall, with a maximum observed value of 7.5 fold. Conclusions: We find considerable potential for identifying taxon-marker indels using an automated pipeline. However, it appears that simple indels in universal proteins are too rare and homoplasy-rich to be used for pure indel-based phylogeny. The excess of insertions over deletions seen in nearly every genome and major group examined maybe useful in defining more realistic gap penalties for sequence alignment. This bias also suggests that insertions in highly conserved proteins experience less purifying selection than do deletions
    corecore