23 research outputs found

    Catches, bycatches and stock indicators of fisheries targeting cyprinids along the Swedish Baltic Sea coast

    Get PDF
    Decreasing abundance of many traditionally exploited fish stocks in the Baltic Sea force small-scale fisheries to find new ways to make a living. In line with Swedish national strategies on food supply there is an interest to develop commercial cyprinid fisheries. In the Bothnian Bay in the northern part of the Baltic Sea, annual catches have increased from zero-catches 2018-30 tonnes 2021. To aid a sustainable development of these cyprinid fisheries that target mainly bream (Abramis brama) and ide (Leuciscus idus), we study catch efficiency of target species and bycatch in different gears and seasons using logbook data from the Bothnian Bay. Using cameras, we also assessed bycatch rates. To assist the sustainability of the fishery we develop potential stock indicators. Our results suggests that larger gear (pound-nets) are more effective in catching bream, and that the proportion of bycatch decreased with gear size, being < 10% in the largest gear, which is similar or lower than many other Baltic Sea fisheries. By-catches of salmon is of concern in the Bothnian Bay, but the camera study indicates that salmon bycatches are sporadic. Catch per unit effort (CPUE) of bream was highest in spring and fall, and we conclude that site specific median CPUE is the most suitable stock abundance indicator. The size indicator L90, the 90th percentile of the length distribution, was similar among areas and we propose it as a suitable indicator of the demographic structure of the targeted bream stocks. Our results provide reference points for relatively unfished conditions, but as the study was based on mainly fishery dependent data, it is important to also include fishery independent data to assess ecosystem effects of a future and intensified cyprinid fishery

    Widening the lens of population-based health research to climate change impacts and adaptation: the climate change and health evaluation and response system (CHEERS)

    Get PDF
    BackgroundClimate change significantly impacts health in low-and middle-income countries (LMICs), exacerbating vulnerabilities. Comprehensive data for evidence-based research and decision-making is crucial but scarce. Health and Demographic Surveillance Sites (HDSSs) in Africa and Asia provide a robust infrastructure with longitudinal population cohort data, yet they lack climate-health specific data. Acquiring this information is essential for understanding the burden of climate-sensitive diseases on populations and guiding targeted policies and interventions in LMICs to enhance mitigation and adaptation capacities.ObjectiveThe objective of this research is to develop and implement the Change and Health Evaluation and Response System (CHEERS) as a methodological framework, designed to facilitate the generation and ongoing monitoring of climate change and health-related data within existing Health and Demographic Surveillance Sites (HDSSs) and comparable research infrastructures.MethodsCHEERS uses a multi-tiered approach to assess health and environmental exposures at the individual, household, and community levels, utilizing digital tools such as wearable devices, indoor temperature and humidity measurements, remotely sensed satellite data, and 3D-printed weather stations. The CHEERS framework utilizes a graph database to efficiently manage and analyze diverse data types, leveraging graph algorithms to understand the complex interplay between health and environmental exposures.ResultsThe Nouna CHEERS site, established in 2022, has yielded significant preliminary findings. By using remotely-sensed data, the site has been able to predict crop yield at a household level in Nouna and explore the relationships between yield, socioeconomic factors, and health outcomes. The feasibility and acceptability of wearable technology have been confirmed in rural Burkina Faso for obtaining individual-level data, despite the presence of technical challenges. The use of wearables to study the impact of extreme weather on health has shown significant effects of heat exposure on sleep and daily activity, highlighting the urgent need for interventions to mitigate adverse health consequences.ConclusionImplementing the CHEERS in research infrastructures can advance climate change and health research, as large and longitudinal datasets have been scarce for LMICs. This data can inform health priorities, guide resource allocation to address climate change and health exposures, and protect vulnerable communities in LMICs from these exposures

    The tissue-specific IncRNA Fendrr is an essential regulator of heart and body wall development in the mouse.

    Get PDF
    The histone-modifying complexes PRC2 and TrxG/MLL play pivotal roles in determining the activation state of genes controlling pluripotency, lineage commitment, and cell differentiation. Long noncoding RNAs (lncRNAs) can bind to either complex, and some have been shown to act as modulators of PRC2 or TrxG/MLL activity. Here we show that the lateral mesoderm-specific lncRNA Fendrr is essential for proper heart and body wall development in the mouse. Embryos lacking Fendrr displayed upregulation of several transcription factors controlling lateral plate or cardiac mesoderm differentiation, accompanied by a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation and/or an increase in H3K4 trimethylation at their promoters. Fendrr binds to both the PRC2 and TrxG/MLL complexes, suggesting that it acts as modulator of chromatin signatures that define gene activity. Thus, we identified an lncRNA that plays an essential role in the regulatory networks controlling the fate of lateral mesoderm derivatives

    The Tissue-Specific lncRNA Fendrr Is an Essential Regulator of Heart and Body Wall Development in the Mouse

    Get PDF
    The histone-modifying complexes PRC2 and TrxG/MLL play pivotal roles in determining the activation state of genes controlling pluripotency, lineage commitment, and cell differentiation. Long noncoding RNAs (lncRNAs) can bind to either complex, and some have been shown to act as modulators of PRC2 or TrxG/MLL activity. Here we show that the lateral mesoderm-specific lncRNA Fendrr is essential for proper heart and body wall development in the mouse. Embryos lacking Fendrr displayed upregulation of several transcription factors controlling lateral plate or cardiac mesoderm differentiation, accompanied by a drastic reduction in PRC2 occupancy along with decreased H3K27 trimethylation and/or an increase in H3K4 trimethylation at their promoters. Fendrr binds to both the PRC2 and TrxG/MLL complexes, suggesting that it acts as modulator of chromatin signatures that define gene activity. Thus, we identified an lncRNA that plays an essential role in the regulatory networks controlling the fate of lateral mesoderm derivatives

    Generation of Red-Shifted Cameleons for Imaging Ca2+ Dynamics of the Endoplasmic Reticulum

    No full text
    Cameleons are sophisticated genetically encoded fluorescent probes that allow quantifying cellular Ca2+ signals. The probes are based on Förster resonance energy transfer (FRET) between terminally located fluorescent proteins (FPs), which move together upon binding of Ca2+ to the central calmodulin myosin light chain kinase M13 domain. Most of the available cameleons consist of cyan and yellow FPs (CFP and YFP) as the FRET pair. However, red-shifted versions with green and orange or red FPs (GFP, OFP, RFP) have some advantages such as less phototoxicity and minimal spectral overlay with autofluorescence of cells and fura-2, a prominent chemical Ca2+ indicator. While GFP/OFP- or GFP/RFP-based cameleons have been successfully used to study cytosolic and mitochondrial Ca2+ signals, red-shifted cameleons to visualize Ca2+ dynamics of the endoplasmic reticulum (ER) have not been developed so far. In this study, we generated and tested several ER targeted red-shifted cameleons. Our results show that GFP/OFP-based cameleons due to miss-targeting and their high Ca2+ binding affinity are inappropriate to record ER Ca2+ signals. However, ER targeted GFP/RFP-based probes were suitable to sense ER Ca2+ in a reliable manner. With this study we increased the palette of cameleons for visualizing Ca2+ dynamics within the main intracellular Ca2+ store
    corecore