111 research outputs found

    Differential genomic imprinting regulates paracrine and autocrine roles of IGF2 in mouse adult neurogenesis.

    Get PDF
    Genomic imprinting is implicated in the control of gene dosage in neurogenic niches. Here we address the importance of Igf2 imprinting for murine adult neurogenesis in the subventricular zone (SVZ) and in the subgranular zone (SGZ) of the hippocampus in vivo. In the SVZ, paracrine IGF2 is a cerebrospinal fluid and endothelial-derived neurogenic factor requiring biallelic expression, with mutants having reduced activation of the stem cell pool and impaired olfactory bulb neurogenesis. In contrast, Igf2 is imprinted in the hippocampus acting as an autocrine factor expressed in neural stem cells (NSCs) solely from the paternal allele. Conditional mutagenesis of Igf2 in blood vessels confirms that endothelial-derived IGF2 contributes to NSC maintenance in SVZ but not in the SGZ, and that this is regulated by the biallelic expression of IGF2 in the vascular compartment. Our findings indicate that a regulatory decision to imprint or not is a functionally important mechanism of transcriptional dosage control in adult neurogenesis.This work was supported by grants from Ministerio de Economía y Competitividad (SAF2012-40107), Generalitat Valenciana (Programa ACOMP2014-258) and Fundación BBVA to SRF and grants from the MRC, Wellcome Trust and EU FP7 Ingenium Training Network to AFS. AW and TRM were supported by the Association for International Cancer Research and Medical Research Council, UK.SRF was a recipient of a Herchel-Smith fellowship and currently is a Ramón y Cajal investigator. ADM is funded by a Spanish FPU fellowship program of the Ministerio de Educación, Cultura y Deporte. AR was from the Erasmus Placement Program.This is the final version of the article. It first appeared from Nature Publishing Group via http://dx.doi.org/10.1038/ncomms926

    Heritable rather than age-related environmental and stochastic factors dominate variation in DNA methylation of the human IGF2/H19 locus.

    Get PDF
    Epigenetic variation may significantly contribute to the risk of common disease. Currently, little is known about the extent and causes of epigenetic variation. Here, we investigated the contribution of heritable influences and the combined effect of environmental and stochastic factors to variation in DNA methylation of the IGF2/H19 locus. Moreover, we tested whether this locus was subject to age-related degeneration of epigenetic patterns as was previously suggested for global methylation. We measured methylation of the H19 and IGF2 differentially methylated regions (DMRs) in 196 adolescent and 176 middle-aged twins using a recently developed mass spectrometry-based method. We observed substantial variation in DNA methylation across individuals, underscoring that DNA methylation is a quantitative trait. Analysis of data in monozygotic and dizygotic twins revealed that a significant part of this variation could be attributed to heritable factors. The heritability of methylation of individual CpG sites varied between 20 and 74% for the H19 DMR and was even higher, between 57 and 97%, for the IGF2 DMR. Remarkably, the combined influence of environmental and stochastic factors on DNA methylation was not greater in middle-age than in adolescence, suggesting a limited role for age-related degeneration of methylation patterns at this locus. Single nucleotide polymorphisms in the IGF2/H19 locus were significantly associated with DNA methylation of the IGF2 DMR (P = 0.004). A preliminary analysis suggested an association between H19 DMR methylation and body size (P < 0.05). Our study shows that variation in DNA methylation of the IGF2/H19 locus is mainly determined by heritable factors and single nucleotide polymorphisms (SNPs) in cis, rather than the cumulative effect of environmental and stochastic factors occurring with age. © 2007 Oxford University Press

    Asymmetric Strand Segregation: Epigenetic Costs of Genetic Fidelity?

    Get PDF
    Asymmetric strand segregation has been proposed as a mechanism to minimize effective mutation rates in epithelial tissues. Under asymmetric strand segregation, the double-stranded molecule that contains the oldest DNA strand is preferentially targeted to the somatic stem cell after each round of DNA replication. This oldest DNA strand is expected to have fewer errors than younger strands because some of the errors that arise on daughter strands during their synthesis fail to be repaired. Empirical findings suggest the possibility of asymmetric strand segregation in a subset of mammalian cell lineages, indicating that it may indeed function to increase genetic fidelity. However, the implications of asymmetric strand segregation for the fidelity of epigenetic information remain unexplored. Here, I explore the impact of strand-segregation dynamics on epigenetic fidelity using a mathematical-modelling approach that draws on the known molecular mechanisms of DNA methylation and existing rate estimates from empirical methylation data. I find that, for a wide range of starting methylation densities, asymmetric—but not symmetric—strand segregation leads to systematic increases in methylation levels if parent strands are subject to de novo methylation events. I found that epigenetic fidelity can be compromised when enhanced genetic fidelity is achieved through asymmetric strand segregation. Strand segregation dynamics could thus explain the increased DNA methylation densities that are observed in structured cellular populations during aging and in disease

    Human Placental-Specific Epipolymorphism and its Association with Adverse Pregnancy Outcomes

    Get PDF
    Interindividual variation in DNA-methylation level is widespread in the human genome, despite its critical role in regulating gene expression. The nature of this variation, including its tissue-specific nature, and the role it may play in human phenotypic variation and disease is still poorly characterized. The placenta plays a critical role in regulating fetal growth and development in ways that have lifelong effects on health. To identify genes with a high degree of interindividual DNA methylation variation in the human placenta, we surveyed the human genome using the Illumina GoldenGate Methylation Cancer panel targeting 1505 CpG sites of 807 genes. While many sites show a continuous pattern of methylation levels, WNT2, TUSC3 and EPHB4 were identified to have a polymorphic “on-or-off” pattern of DNA methylation variation at their promoter region which was confirmed by pyrosequencing. Methylation of these genes can be found in 7%–25% of over 100 placentas tested. The methylation state at the promoter of these genes is concordant with mRNA allelic expression. In three informative cases TUSC3 was observed to be methylated on the maternal allele, and it is thus possible this represents a polymorphically imprinted gene. Furthermore, TUSC3 promoter methylation showed evidence for association with preeclampsia. A biological significance of these methylation allelic polymorphisms (MAPs) to human placental diversity is further implied by their placental specificity and absence in mouse. An extended study of blood suggests that MAPs may also be found in other tissues, implicating their utility for tissue-specific association with complex disorders. The identification of such “epipolymorphism” in other tissues and their use in association studies, should improve our understanding of interindividual phenotypic variability and complex disease susceptibility

    Adipose tissue dysfunction as a central mechanism leading to dysmetabolic obesity triggered by chronic exposure to p,p'-DDE

    Get PDF
    Endocrine-disrupting chemicals such as p,p'-dichlorodiphenyldichloroethylene (p,p'-DDE), are bioaccumulated in the adipose tissue (AT) and have been implicated in the obesity and diabetes epidemic. Thus, it is hypothesized that p,p'-DDE exposure could aggravate the harm of an obesogenic context. We explored the effects of 12 weeks exposure in male Wistar rats' metabolism and AT biology, assessing a range of metabolic, biochemical and histological parameters. p,p'-DDE -treatment exacerbated several of the metabolic syndrome-accompanying features induced by high-fat diet (HF), such as dyslipidaemia, glucose intolerance and hypertension. A transcriptome analysis comparing mesenteric visceral AT (vAT) of HF and HF/DDE groups revealed a decrease in expression of nervous system and tissue development-related genes, with special relevance for the neuropeptide galanin that also revealed DNA methylation changes at its promoter region. Additionally, we observed an increase in transcription of dipeptidylpeptidase 4, as well as a plasmatic increase of the pro-inflammatory cytokine IL-1β. Our results suggest that p,p'-DDE impairs vAT normal function and effectively decreases the dynamic response to energy surplus. We conclude that p,p'-DDE does not merely accumulate in fat, but may contribute significantly to the development of metabolic dysfunction and inflammation. Our findings reinforce their recognition as metabolism disrupting chemicals, even in non-obesogenic contexts.This article was supported by ERDF (European Regional Development Fund) through the operation POCI-01-0145-FEDER-007746 funded by the Programa Operacional Competitividade e Internacionalização – COMPETE2020 and by National Funds through FCT - Fundação para a Ciência e a Tecnologia within CINTESIS, R&D Unit (reference UID/IC/4255/2013); PEst-OE/SAU/UI0038/2011; SFRH/BPD/109158/2015; SFRH/BD/46640/2008, SFRH/BD/64691/2009, SFRH/BD/78367/2011, SFRH/BD/93073/2013, SFRH/BPD/109153/2015, SFRH/BD/47200/2008, SFRH/BPD/75294/2010; and SFRH/BPD/40110/2007

    Programming of adipose tissue miR-483-3p and GDF-3 expression by maternal diet in type 2 diabetes.

    Get PDF
    Nutrition during early mammalian development permanently influences health of the adult, including increasing the risk of type 2 diabetes and coronary heart disease. However, the molecular mechanisms underlying such programming are poorly defined. Here we demonstrate that programmed changes in miRNA expression link early-life nutrition to long-term health. Specifically, we show that miR-483-3p is upregulated in adipose tissue from low-birth-weight adult humans and prediabetic adult rats exposed to suboptimal nutrition in early life. We demonstrate that manipulation of miR-483-3p levels in vitro substantially modulates the capacity of adipocytes to differentiate and store lipids. We show that some of these effects are mediated by translational repression of growth/differentiation factor-3, a target of miR-483-3p. We propose that increased miR-483-3p expression in vivo, programmed by early-life nutrition, limits storage of lipids in adipose tissue, causing lipotoxicity and insulin resistance and thus increasing susceptibility to metabolic disease.This work was funded by the BBSRC (project grants BB/F-15364/1 and BB/F-14279/1). SEO is a British Heart Foundation Senior Fellow (FS/09/029/27902), MB is an MRC Senior Fellow and AEW is a BBSRC Professorial Fellow. KS and SEO are members of the MRC Centre for Obesity and Related Metabolic Diseases (MRC-CORD), which also provided a studentship for MW. KS is a member of the European Union COST Action BM0602

    Prdm9, a Major Determinant of Meiotic Recombination Hotspots, Is Not Functional in Dogs and Their Wild Relatives, Wolves and Coyotes

    Get PDF
    Meiotic recombination is a fundamental process needed for the correct segregation of chromosomes during meiosis in sexually reproducing organisms. In humans, 80% of crossovers are estimated to occur at specific areas of the genome called recombination hotspots. Recently, a protein called PRDM9 was identified as a major player in determining the location of genome-wide meiotic recombination hotspots in humans and mice. The origin of this protein seems to be ancient in evolutionary time, as reflected by its fairly conserved structure in lineages that diverged over 700 million years ago. Despite its important role, there are many animal groups in which Prdm9 is absent (e.g. birds, reptiles, amphibians, diptera) and it has been suggested to have disruptive mutations and thus to be a pseudogene in dogs. Because of the dog's history through domestication and artificial selection, we wanted to confirm the presence of a disrupted Prdm9 gene in dogs and determine whether this was exclusive of this species or whether it also occurred in its wild ancestor, the wolf, and in a close relative, the coyote. We sequenced the region in the dog genome that aligned to the last exon of the human Prdm9, containing the entire zinc finger domain, in 4 dogs, 17 wolves and 2 coyotes. Our results show that the three canid species possess mutations that likely make this gene non functional. Because these mutations are shared across the three species, they must have appeared prior to the split of the wolf and the coyote, millions of years ago, and are not related to domestication. In addition, our results suggest that in these three canid species recombination does not occur at hotspots or hotspot location is controlled through a mechanism yet to be determined

    Human Intelligence and Polymorphisms in the DNA Methyltransferase Genes Involved in Epigenetic Marking

    Get PDF
    Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C>T (rs7354779) allele was associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also significant in the additive model (coefficient = 1.40additive; 95%CI 0.22,2.59; p = 0.020 and 1.99dominant; 95%CI 0.55,3.43; p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25additive; 95%CI 1.05,1.51; p = 0.011 and OR 1.37dominant; 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40th (padditive = 0.009; pdominant = 0.002) and lowest 30th (padditive = 0.004; pdominant = 0.002) centiles for intelligence. After Bonferroni correction for the number variants tested the link between DNMT3L 11330C>T and childhood intelligence remained significant by linear regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in human intelligence merits further study and that this novel finding should be tested in other cohorts

    High Diversity at PRDM9 in Chimpanzees and Bonobos

    Get PDF
    BACKGROUND: The PRDM9 locus in mammals has increasingly attracted research attention due to its role in mediating chromosomal recombination and possible involvement in hybrid sterility and hence speciation processes. The aim of this study was to characterize sequence variation at the PRDM9 locus in a sample of our closest living relatives, the chimpanzees and bonobos. METHODOLOGY/PRINCIPAL FINDINGS: PRDM9 contains a highly variable and repetitive zinc finger array. We amplified this domain using long-range PCR and determined the DNA sequences using conventional Sanger sequencing. From 17 chimpanzees representing three subspecies and five bonobos we obtained a total of 12 alleles differing at the nucleotide level. Based on a data set consisting of our data and recently published Pan PRDM9 sequences, we found that at the subspecies level, diversity levels did not differ among chimpanzee subspecies or between chimpanzee subspecies and bonobos. In contrast, the sample of chimpanzees harbors significantly more diversity at PRDM9 than samples of humans. Pan PRDM9 shows signs of rapid evolution including no alleles or ZnFs in common with humans as well as signals of positive selection in the residues responsible for DNA binding. CONCLUSIONS AND SIGNIFICANCE: The high number of alleles specific to the genus Pan, signs of positive selection in the DNA binding residues, and reported lack of conservation of recombination hotspots between chimpanzees and humans suggest that PRDM9 could be active in hotspot recruitment in the genus Pan. Chimpanzees and bonobos are considered separate species and do not have overlapping ranges in the wild, making the presence of shared alleles at the amino acid level between the chimpanzee and bonobo species interesting in view of the hypothesis that PRDM9 plays a universal role in interspecific hybrid sterility
    corecore