2,980 research outputs found

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to the design and control of an autonomous rover for the purpose of unmanned exploration of the planets were considered. Building on the basis of prior studies, a four wheeled rover of unusual mobility and maneuverability was further refined and tested under both laboratory and field conditions. A second major effort was made to develop autonomous guidance. Path selection systems capable of dealing with relatively formidable hazard and terrains involving various short range (1.0-3.0 meters), hazard detection systems using a triangulation detection concept were simulated and evaluated. The mechanical/electronic systems required to implement such a scheme were constructed and tested. These systems include: laser transmitter, photodetectors, the necessary data handling/controlling systems and a scanning mast. In addition, a telemetry system to interface the vehicle, the off-board computer and a remote control module for operator intervention were developed. Software for the autonomous control concept was written. All of the systems required for complete autonomous control were shown to be satisfactory except for that portion of the software relating to the handling of interrupt commands

    Analysis and design of a capsule landing system and surface vehicle control system for Mars exploration

    Get PDF
    Problems related to the design and control of a mobile planetary vehicle to implement a systematic plan for the exploration of Mars are reported. Problem areas include: vehicle configuration, control, dynamics, systems and propulsion; systems analysis, terrain modeling and path selection; and chemical analysis of specimens. These tasks are summarized: vehicle model design, mathematical model of vehicle dynamics, experimental vehicle dynamics, obstacle negotiation, electrochemical controls, remote control, collapsibility and deployment, construction of a wheel tester, wheel analysis, payload design, system design optimization, effect of design assumptions, accessory optimal design, on-board computer subsystem, laser range measurement, discrete obstacle detection, obstacle detection systems, terrain modeling, path selection system simulation and evaluation, gas chromatograph/mass spectrometer system concepts, and chromatograph model evaluation and improvement

    Using scientific machine learning for experimental bifurcation analysis of dynamic systems

    Get PDF
    Augmenting mechanistic ordinary differential equation (ODE) models with machine-learnable structures is an novel approach to create highly accurate, low-dimensional models of engineering systems incorporating both expert knowledge and reality through measurement data. Our exploratory study focuses on training universal differential equation (UDE) models for physical nonlinear dynamical systems with limit cycles: an aerofoil undergoing flutter oscillations and an electrodynamic nonlinear oscillator. We consider examples where training data is generated by numerical simulations, whereas we also employ the proposed modelling concept to physical experiments allowing us to investigate problems with a wide range of complexity. To collect the training data, the method of control-based continuation is used as it captures not just the stable but also the unstable limit cycles of the observed system. This feature makes it possible to extract more information about the observed system than the standard, open-loop approach would allow. We use both neural networks and Gaussian processes as universal approximators alongside the mechanistic models to give a critical assessment of the accuracy and robustness of the UDE modelling approach. We also highlight the potential issues one may run into during the training procedure indicating the limits of the current modelling framework.Comment: 16 pages, 15 figure

    Polymeric alkali fullerides are stable in air

    Full text link
    Infrared transmission, electron spin resonance, and X-ray diffraction measurements show unambiguously that RbC60_{60} and KC60_{60} are stable in air, in contrast to Rb6_{6}C60_{60} which decomposes rapidly upon exposure. The specimens studied transform into pure C60_{60} and other byproducts when heated above 100\dd C, approximately the temperature of the orthorhombic-fcc phase transition. The stability of these compounds raises the possibility of applying them as protective layers for the superconducting fullerides.Comment: Scheduled for publication in Appl. Phys. Lett. 66, 20 Feb. 1995, typeset in REVTEX v3.0 in LaTeX. Postscript file including all figures is available on WWW http://insti.physics.sunysb.edu/~mmartin/ under my list of publications, or will be e-mailed by request

    Mechanochemistry with Metallosupramolecular Polymers

    Get PDF
    The transduction of mechanical force into useful chemical reactions is an emerging design approach to impart soft materials with new functions. Here, we report that mechanochemical transductions can be achieved in metallo-supramolecular polymers. We show that both reversible and irreversible reactions are possible and useful to create me-chanically responsive materials that display new functions. The metallopolymer studied was a crosslinked network assembled from a europium salt and a telechelic poly(ethylene-co-butylene) with 2,6-bis(1′- methylbenzimidazolyl)pyridine (Mebip) ligands at the termini. The Eu3+ complexes serve both as mechanically responsive binding motifs and built-in optical probes that can monitor the extent of (dis)assembly due to their characteristic photoluminescent properties. Indeed, dose-dependent and reversible metal-ligand dissociation occurs upon exposure to ultrasound in solution. The absence of ultrasound-induced dissociation of a low-molecular weight model complex and in-depth studies of temperature effects confirm that the dissociation is indeed the result of mechanical activation. The influence of the strength of the metal-ligand interactions on the mechanically induced dissociation was also explored. Metallopolymers in which the Mebip ligands were substituted with more strongly coordinating dipicolinate (dpa) ligands do not dissociate upon exposure to ultrasound. Finally we show that mechanochemical transduction in metallosupramolecular polymers is also possible in the solid state. We demonstrate mending of damaged objects through ultrasound as well as mechanochromic behavior based on metal-exchange reactions in metallopolymers imbibed with an auxiliary metal salt

    Orbital Migration of Interacting Stellar Mass Black Holes in Disks around Supermassive Black Holes

    Get PDF
    The merger rate of stellar-mass black hole binaries (sBHBs) inferred by the Advanced Laser Interferometer Gravitational-Wave Observatory (LIGO) suggests the need for an efficient source of sBHB formation. Active galactic nucleus (AGN) disks are a promising location for the formation of these sBHBs, as well as binaries of other compact objects, because of powerful torques exerted by the gas disk. These gas torques cause orbiting compact objects to migrate towards regions in the disk where inward and outward torques cancel, known as migration traps. We simulate the migration of stellar mass black holes in an example of a model AGN disk, using an augmented N-body code that includes analytic approximations to migration torques, stochastic gravitational forces exerted by turbulent density fluctuations in the disk, and inclination and eccentricity dampening produced by passages through the gas disk, in addition to the standard gravitational forces between objects. We find that sBHBs form rapidly in our model disk as stellar-mass black holes migrate towards the migration trap. These sBHBs are likely to subsequently merge on short time-scales. The process continues, leading to the build-up of a population of over-massive stellar-mass black holes. The formation of sBHBs in AGN disks could contribute significantly to the sBHB merger rate inferred by LIGO.Comment: 18 pages, 13 figures, Accepted to Ap

    3-Amino-5-bromo-2-iodo­pyridine

    Get PDF
    The reaction of 3-amino-5-bromo­pyridine with N-iodo­succinimide in the presence of acetic acid produces the title compound, C5H4BrIN, with an iodo substituent in position 2 of the pyridine ring. The crystal structure features rather weak inter­molecular N—H⋯N hydrogen bonds linking the mol­ecules into chains along the z axis of the crystal
    • …
    corecore