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Using scientific machine learning for experimental
bifurcation analysis of dynamic systems

Sandor Beregi, David A. W. Barton, Djamel Rezgui, Simon Neild

Faculty of Engineering, University of Bristol, United Kingdom

Abstract

Augmenting mechanistic ordinary differential equation (ODE) models with
machine-learnable structures is an novel approach to create highly accurate,
low-dimensional models of engineering systems incorporating both expert
knowledge and reality through measurement data. Our exploratory study
focuses on training universal differential equation (UDE) models for physical
nonlinear dynamical systems with limit cycles: an aerofoil undergoing flutter
oscillations and an electrodynamic nonlinear oscillator. We consider exam-
ples where training data is generated by numerical simulations, whereas we
also employ the proposed modelling concept to physical experiments allow-
ing us to investigate problems with a wide range of complexity. To collect
the training data, the method of control-based continuation is used as it cap-
tures not just the stable but also the unstable limit cycles of the observed
system. This feature makes it possible to extract more information about
the observed system than the standard, open-loop approach would allow.
We use both neural networks and Gaussian processes as universal approxi-
mators alongside the mechanistic models to give a critical assessment of the
accuracy and robustness of the UDE modelling approach. We also high-
light the potential issues one may run into during the training procedure
indicating the limits of the current modelling framework.

1. Introduction

Data-driven modelling of real-life systems is an increasingly popular ap-
proach both in the scientific community and in industry. With increasing
data and computational capacity becoming available, there is a growing
number of areas where machine learning techniques are used to incorpo-
rate measurement data in the modelling procedure [5]. This also resonates
with the industrial demand for highly precise, adaptive, real-time models of
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physical structures. These so-called digital twins [37] can then be used for
example in design, decision-making, or failure diagnostics.

While machine learning techniques have been successfully used in many
fields such as image processing [16], speech recognition [14] or computa-
tional biology [4], the field of scientific machine learning (SciML) is rela-
tively new [5]. The feature of SciML that differentiates it from most other
machine learning applications is that machine learning techniques are em-
ployed alongside existing mathematical models; i.e., instead of treating the
modelled system as an unknown ‘black box’-type system, additional infor-
mation such as symmetries or known physical laws are incorporated in the
hybrid machine-learned models [24].

Using universal differential equations (UDEs), that is, differential equa-
tions with embedded machine-learnt structures is a recent approach within
SciML. UDEs are essentially hybrid differential equations with machine
learnable structures embedded in the right-hand-side. Since differential
equations are commonly used to model engineering problems, UDEs pro-
vide a convenient way to incorporate expert knowledge and physical insight
about the observed system into machine-learnt models. This modelling con-
cept is similar to neural differential equations (NDEs) where the derivative
of the state variables is modelled by a neural network [10]. Nevertheless,
making ‘smaller’ corrections to qualitatively correct physics-based models,
rather than relying purely on machine-learnable structures to capture the
dynamics of the observed system, is expected to require a smaller computa-
tional effort by enabling to use smaller-scale machine-learnt structures and
smaller data-sets.

With physics-based models on the other hand, it is often not feasible
to consider and capture all the experimental features within. Thus, mech-
anistic models in almost every case have some degree of error compared to
measurement data, particularly when nonlinear behaviour is present. Thus,
the accuracy of these models can be further improved by machine-learnt
structures trained on measurement data.

Several studies have used UDE or NDE models for physical structures
[23], pandemic- [11, 21] and climate modelling [25]. It is worth highlighting
the work of Rackauckas et al. [22] to create an environment in the Julia
programming language which allows for construction and training of such
models. Most of these studies focus on identifying a well-fitting model with
a constant set of system parameters. Nevertheless, there are several ap-
plications where it is also interesting to investigate the system’s response
to varying parameters. For instance, one may be interested in the effect
of parameter-uncertainty on the system, or its behaviour under changing
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external conditions such as temperature, or wear during its life-cycle.
Our study focuses on another such area, nonlinear dynamical systems

and the application of the UDE models in this context. Nonlinear dynamical
systems are commonly characterised by their bifurcation diagrams indicating
the steady-state system behaviour as selected system parameters (referred
to as bifurcation parameters) change. Thus, these are typically considered
as varying-parameter problems [17].

While obtaining bifurcation diagrams for numerical numerical models
is standard nowadays and aided by numerous software packages, doing the
same for physical experiments is much more recent. The main issue in ex-
periments is that by varying one of the system parameters and observing the
response in an ‘open-loop’ way, one can only identify the stable solutions,
whereas the unstable ones remain hidden. The technique of control-based
continuation (CBC), introduced in [32] is capable of tracing both stable and
unstable limit cycles in physical experiments. The method has been adapted
to deal with random perturbations/process-noise in the experiment [30, 27],
it has been also extended to provide information on stability (without turn-
ing the controller off) [7], and it has been made capable of tracing self-excited
vibrations in autonomous systems [20]. Having the additional information
about the unstable solutions has significant merits in modelling and param-
eter identification problems. As shown in [8], by identifying the parameters
of a dynamical system with polynomial nonlinearity, CBC, when compared
to the standard open-loop approach, offers better robustness against pro-
cess noise in revealing the finer details of physical experiments. This result
motivated the use of CBC in this study to collect the training data for
machine-learnable models.

In context of nonlinear systems, there is often an interest to find the
so-called normal forms: minimalistic models with the bifurcation diagram
characteristic to the observed phenomenon. In their study, Lee et al. [20]
used machine learning techniques to identify the transformation from phys-
ical to normal coordinates of a Hopf bifurcation for aeroelastic flutter based
on measurement data. The aim of our investigation is similar in the sense
that we reconstruct measured bifurcation diagrams of nonlinear systems:
an aerofoil undergoing flutter and an electrodynamical oscillator. However,
instead of identifying the reduced order normal form, we do not restrict the
model to a minimal order, but instead, use as many of the available states
from the measurement in the UDE model as possible while retaining the
physical coordinates.

Our study is exploratory in the sense that our main goal is to assess
the potential of the mechanistic/machine-learnt hybrid models for nonlin-
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Figure 1: Panel (a): The concept of identifying physics-based/machine-learnable hybrid
models for nonlinear dynamical systems. Panel (b): Example for the predicted trajectories
of the pure physics-based and the UDE models compared to the measured data.

ear systems. Therefore, we choose the approach of using relatively simple
machine-learnt models and training framework and reporting on the issues
that occurred, rather than investing effort to tailor the algorithms to tackle
these challenges.

The rest of our paper is organised as follows. In Section 2, we introduce
the modelling concept using UDE models comprising a physics-based model
with the measured state variables of the system and a machine-learnable
structure trained to compensate the error of the pure mechanistic model. In
Section 3, two examples are presented, an aerofoil that exhibits aeroelastic
flutter, and nonlinear electrodynamic oscillator. In Sections 4 and 5, training
of UDE models is performed using data from numerical models and physical
experiments, respectively. For our two practical examples, we draw the
conclusions of our analysis in Section 6.

2. Modelling concept

Our study focuses on training UDE models for nonlinear systems ex-
hibiting limit cycles. It is common practice to represent these in bifurcation
diagrams where branches of limit cycles are shown while one (or more) sys-
tem parameter(s) – the bifurcation parameter(s) – is/are varied [17]. These
diagrams are fundamental in characterising nonlinear systems since they not
only show the steady state solutions and their stability, but, in addition,
with some topological extrapolation, give information about the transient
behaviour. These characteristics motivate us to use measured limit cycles
in the numerical simulations and physical experiments both as training data
and as benchmark to evaluate the predictions of the fitted UDE models.
The modelling concept is summarised in Fig. 1.
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2.1. The universal differential equation model

Let us consider an experimental representation of a dynamical system. In
real-life scenarios, one can only acquire data from the observable part of the
underlying dynamical system and its state variables. Therefore, we divide
the observed system and its state variables into a measured and a hidden
part. We refer to the vectors of the corresponding measured and hidden
state variables as x and u, respectively, with x(t) ∈ Rm and u(t) ∈ Rmh .
To take into account the effect of process noise, the underlying system can
be given as a stochastic differential equation in the form(

dx

du

)
=

(
f(x,u; p)

g(x,u; p)

)
dt+

(
Γ(x,u; p)

Φ(x,u; p)

)
dW,

measured

hidden
(1)

where the functions f and g define the deterministic parts of the system.
The effect of process noise is considered by the Wiener process W with the
coefficient functions Γ and Φ corresponding to the measured and hidden
parts of the system, respectively. This assumes a single source of noise in
the observed system, which covers all examples considered in this study.
Nevertheless, the concept could be generalised to accommodate multiple
sources of noise.

All functions defining the right-hand side of Eq. (1) are assumed to be
dependent to the parameter vector p. Equation (1) simplifies to an ordinary
differential equation (ODE) with Γ = 0 and Φ = 0 which we refer to as the
deterministic case.

We approximate the measured part of the underlying system with a
universal differential equation [22] where the physics-based part f̃ is aug-
mented with a so-called universal approximator : a machine-learnable re-
gression function U with parameters q

dx ≈ dx̃ :=
(
f̃(x̃; p) + U(x̃; p; q)

)
dt + Γ̃(x̃; p)dW. (2)

Accordingly, it is assumed that the physics-based part and the hidden dy-
namics are separable. It is worth mentioning that the modelling framework
would allow to consider a universal approximator embedded to the physics-
based part f̃ as f̃ (x̃,U(x̃; p; q); p) which can be useful in scenarios when
one has some – albeit limited – insight into the dynamics that are missing
from the mechanistic model.

We assume that the physics-based part of the model already provides
qualitatively correct results by itself; hence, the main purpose of the cor-
rection with the universal approximator is to compensate the quantitative
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difference between the theoretical results and measurements. While it would
be possible to approximate the entire right-hand side of Eq. (2) with uni-
versal approximators, in doing this we would fail to exploit any prior knowl-
edge about the modelled system. The main benefit of this hybrid approach
is that a smaller-scale universal approximator and/or fewer measurements
may be satisfactory to obtain an accurate numerical model than with a pure
machine-learnable model. This might be especially useful if data acquisition
from the measurement is expensive.

In our study, two of the most commonly used universal approximators
are considered: neural networks and Gaussian processes.

2.2. Model training

2.2.1. Neural networks

When using a neural network as the universal approximator, we employ
the DiffEqFlux.jl [22] package in Julia to train the neural network in the
UDE model. This package combines numerical simulations with machine
learning, as the training procedure is based on minimising the error between
the measured and predicted trajectories.

Let us consider the j-th approximation of the measured part of the ob-
served system in the training procedure, using the parameters qj in the
universal approximator

dx̃j :=
(
f̃(x̃; p) + U(x̃; p; qj)

)
dt + Γ̃(x̃; p)dW. (3)

We refer to the predicted trajectories corresponding to the initial condition
x̃0 and parameters p and qj as x̃j(t). Assuming we have measurement data
collected from the observed system (1) at the time instants ti, i = 1, ..., N ,
the measured trajectories are represented by x(ti) =: xi. The objective
function is formulated using the Euclidean norm of the sum of errors between
the measured and predicted states

εj =

N∑
j=1

(
x̃j
i − xi

)2
. (4)

The model parameters can be divided into two groups: the parameters
p of the physics-based part and the parameters q corresponding to the
neural network. We assume that the parameters of the physics-based model
are already optimised and fitted to match the measurement data as well
as possible. This prevents the neural network from approximating existing
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known terms. Therefore, our analysis focuses on the optimisation of the
neural network parameters only.

In our study, we use feed-forward neural networks [18, 31, 15] consisting
of nodes with a sigmoid activation function. The nodes are organised in
layers which are referred to either as input, hidden or output layers according
to their position in the network. In a neural network with L layers (the
1st layer is referred to the as input-, the L-th as the output layer) the
contribution of the kth layer can be given as

yk = hact(Zk) = hk(yk−1), (5)

where hact is the activation function with yk ∈ RNk , yk−1 ∈ RNk−1 while

Zk = Wkyk−1 + bk, (6)

with biases bk ∈ RNk and weights Wk ∈ RNk×Nk . Thus, the effect of the
whole neural network can be given by the nested function

yL = hL ◦ hL−1 ◦ ... ◦ h1(y0), (7)

where L is the number of layers in the network. Thus, the aim of the
optimisation procedure is to find the elements of the weight matrices Wk

and biases bk of the nodes in the neural network corresponding to the global
minimum of the objective function ε.

The training of the neural network is carried out in multiple-steps using
the GalacticOptim.jl [2] package in Julia. The ADAM algorithm in the
Flux.jl Julia package [1] is used first in our examples to find an approximate
minimum of the objective function. Then, the identified minimum is refined
by standard gradient descent.

2.2.2. Gaussian processes

An alternative approach to neural networks is to use a Gaussian process
as the universal approximator [26]. In the literature, several studies in-
vestigate the relationship between neural networks and Gaussian processes,
finding that certain neural networks have an equivalent Gaussian process
[19, 29].

Since Gaussian process regression directly uses the training dataset to
make predictions, the regression function is optimised using the right-hand
side of (2). Let us assume we have access to the derivatives dxt in the time
instants ti: dxi. Accordingly, the error in the right-hand side is expressed
as

εjacc =
N∑
i=1

(
dxi − dx̃j

i

)
(8)
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The training, however, is not solely based on the error between the pre-
diction and the measurement data. A significant difference between the
two approaches is that while neural networks are deterministic, Gaussian
processes have a stochastic underlying function characterised by the mean
mθ(x) and the covariance kθ(x,x′) determined by the kernel function and
the inputs X = (x1, ...,xn). In our study, we used a squared exponential
kernel with automatic relevance prediction (SE-ARD), considering different
length-scales for the input variables. The SE-ARD kernel function is given
by

kθ(x,x′) = σ2exp((λ� (x− x′))2), (9)

with λ = (λ1, ..., λm), where λi = 1/(2`i), while � denotes the Hadamard
product. Thus, the vector θ of the hyperparameters contains the length
scales `i of the kernel function and the standard deviation σ. Consequently,
the number of parameters to be optimised in a Gaussian process is much
lower than in case of a neural network which is a significant advantage of
using the Gaussian process.

Let us assume we have a dataset D = (X,Y) with observations Y =
(y1, ...,yn) and covariates
X = (x1, ...,xn). Then, the Gaussian Process fit is assessed by the marginal
likelihood p(D|θ, σ), i.e., we would like to find θ corresponding to the max-
imal likelihood. In optimisation algorithms, the negative logarithm
−log (p(D|θ, σ)) is used as the objective function.

The optimisation is realised in Julia using the GaussianProcesses.jl pack-
age [13]. Due to the small number of parameters, optimising the parameters
of a Gaussian process takes a fraction of the time needed to train a neural
network. However, since the Gaussian process needs to use the training data
for predictions, it does not scale well if the training dataset is large. More-
over, one may also experience a sensitivity to the initial guess during the
optimisation which might make it necessary to find an appropriate initial
guess by iteration. Therefore, Gaussian processes are most effective with
relatively simple problems in terms of size and dimension.

3. Practical examples

We introduce two practical use-cases for the UDE models: aeroelastic
flutter and a forced electrodynamical oscillator; both systems featuring a
nonlinear restoring force.
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Figure 2: Left: Model of an elastically supported aerofoil. Right: Experimental rig with
an aerofoil in a wind tunnel.

3.1. Aerofoil prone to aeroelastic flutter

To provide a basis for our UDE model for aeroelastic flutter, we consider
a physics-based dynamical model of an aerofoil (see the left panel of Fig. 2)
[3, 12]. The wing, placed in the airstream with an airspeed of V , can move
in the vertical direction and can rotate about the ζ axis. The motion of
the aerofoil is characterised with the generalised coordinates h (heave) and
α (pitch angle), respectively. The wing is supported in the vertical direc-
tion with a linear spring and a damper, characterised by the stiffness s and
viscous damping b, while the compliance in the pitch is given by the non-
linear torsional stiffness st(α) = s1tα + s3tα

3 and linear torsional damping
bt. This cubic stiffness term is a standard way to consider nonlinearity in
low degrees-of-freedom aerofoil models [38]. The bifurcation analysis of the
model presented here is carried out in [3].

To consider aerodynamic effects, two non-physical state variables: w and
its time-derivative ẇ are introduced.

With the above considerations, in the deterministic case, the governing
equations can be given in the form

Mÿ + Bẏ + Sy + fNL(y) = 0, (10)

where the vector of generalised coordinates can be expressed as

y =

hα
w

 (11)
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whereas the vector of the nonlinear forces is given by

fNL(y) =

 0
st2α

2 + st3α
3

0

 . (12)

The mass, damping and stiffness matrices M, B and S, containing both
structural and aerodynamic terms are given in the Appendix Appendix A.1

In the following discussion, we will consider both an experimental and a
numerical representation of the system as our observed system (the experi-
mental version is practically relevant, but the numerical, while artificial, is
helpful in assessing the merits of the proposed techniques). In the case of the
latter, we consider the system given by the governing equations (10) as the
observed system. It is natural to assume that in a physical experiment the
heave and pitch motion of the aerofoil would be relatively easy to measure,
while the aerodynamic effects would remain hidden. Thus, the generalised
coordinates h and α describing the heave and pitch motions of the aerofoil
are assumed to be measured, while the non-physical generalised coordinate
w is treated as hidden.

Based on these assumptions, the UDE model of the system is formulated
as

Mredẍ + Bredẋ + Sredx + fNLred(x) + U(x;V ) = 0, (13)

with

x =

(
h
α

)
, (14)

and

fNLred(y) =

(
0

st2α
2 + st3α

3

)
. (15)

The reduced mass, damping and stiffness matrices Mred, Bred and Sred are
given in Appendix Appendix A.2.

The universal approximator U that is considered to depend on the heave
and pitch motion and the airspeed is used to compensate the error of the 2
DoF physics-based model compared to the 2+1 DoF model of the aerofoil.

To consider process noise in the system, Eq. (10) is extended by an
additive noise term and reformulated as

dż = −M−1 (Bz + Sy + fNL(y)) dt−M−1FLdW,

dy = zdt,
(16)
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where FL contains a moment acting on the aerofoil with a standard deviation
σ

FL =

0
σ
0

 . (17)

Note that, one would encounter process noise both in heave and pitch simul-
taneously in a real experiment. Thus, considering multiple sources of noise
could result in a better characterisation of the system. However, we consider
random perturbations in the pitch moment only, as this allows for a clearer
quantification of the degree of noise-load in the presented examples.

Similarly, the corresponding UDE model is also considered in the SDE
form

du̇ = −M−1
red (Bredu + Sredx + fNLred(x) + U(x;V )) dt−M−1

redF̃LdW,

dx = udt.

(18)

In view of the relatively small/moderately-scaled datasets used for training
the machine-learnt structures, two types are considered: feed-forward, fully
connected, relatively small-scale neural networks and Gaussian Processes.

3.2. Nonlinear electrodynamic oscillator

Our second use case is a nonlinear electrodynamic oscillator subject to
periodic forcing. In this case, we aim to identify a model for the physical
experiment shown in Fig. 3. The nonlinear oscillator is formed from a thin
steel plate, which is clamped to the base as a cantilever beam. At the end
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Figure 4: Bifurcation diagrams of the UDE (thick curves) and pure mechanistic ‘steady-
state’ (thin curves) models of aeroelastic flutter against the training data generated by
the deterministic, ‘unsteady’ flutter model. In the UDE model, a neural network with
2 hidden layers of 12-12 neurons each, with a sigmoid activation function, was used to
augment the physics-based part. The blue and red curves indicate stable and unstable
limit cycles, respectively.

of the beam two iron masses, incorporating four permanent magnets, are
attached. These magnets are interacting with an electromagnetic coil with
an iron core in an insulated housing in the static part of the device. The
resulting combination of structural and magnetic forces results in a nonlinear
restoring force.

Based on a previous study on this particular device [8], we consider an
extended version of the Duffing oscillator with a seventh-order nonlinearity
as the mechanistic model of the experiment (see Fig. 3). As such, we take
the deformation of the beam and the corresponding speed as the measured
state variables. The hidden dynamics is mostly related to the electrodynamic
coupling in the system. Our modelling framework however does not require
a direct characterisation of the hidden dynamics. It is worth mentioning that
in [9], Cammarano et al. consider an LR circuit coupled to the mechanical
part of the model which describes the system response to periodic excitation
with good accuracy; however it did not accurately characterise the non-
periodic response.

As shown in [8], the model of the Duffing-type oscillator can capture the
steady-state response to forcing amplitude at a constant frequency. However,
it can only describe the frequency-response in a qualitative sense. Therefore,
we consider a universal approximator depending on the forcing frequency ω
alongside the physics-based part to generate our UDE model

ẏ = −by − α2x− c3x3 − c5x5 − c7x7 + U(x, y;ω) +A cos(ωt+ ϕ), (19)

ẋ = y, (20)

12



Deterministic σ = 0.02 σ = 0.04

Airspeed [m/s] Airspeed [m/s] Airspeed [m/s]

H
ea

ve
 a

m
p
lit

u
d
e 

[m
]

Figure 5: Bifurcation diagrams of the pure mechanistic ‘steady-state’ model of aeroelastic
flutter and the UDE model using a Gaussian Process trained on data generated by the
‘unsteady’ flutter model with process noise. The crosses indicate the average amplitudes
of the near-periodic solutions of the stochastic underlying system while the predicted
branches of limit cycles are generated using the deterministic parts of the UDE models.

where x and y are the displacement and speed of the mass m, α is the natural
frequency of the oscillator, the parameter b characterises the viscous damp-
ing, whereas the coefficients c3, c5 and c7 describe the 3rd-, 5th- and 7th-order
nonlinearities, respectively. For practical reasons, the forcing amplitude A
is expressed with the amplitude Φ of the base acceleration as A = cAω

2
nΦ,

where ωn is the linear natural angular frequency of the oscillator while cA
is a constant coefficient. For this use-case, we study the deterministic case
only; nevertheless, the model could also be expressed in the SDE form.

4. UDE models of aeroelastic flutter trained a on numerical ob-
served system

We carried out numerical simulations using the 2+1 DoF flutter model
given in Eq. (10), to obtain its bifurcation diagram. We studied both the
deterministic scenario and the case when the system was polluted with ad-
ditive noise. The limit cycles (near-periodic solutions in the stochastic case)
were traced using the technique of control-based continuation (CBC) [32, 6].
While in the deterministic case, a collocation-based method would be an al-
ternative, the method of CBC can also handle stochastic systems, or even
cases when the governing equations of the nonlinear system are not avail-
able, as is the case with physical experiments. The method is described
briefly in Appendix Appendix B.
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the pure mechanistic and the UDE models with a Gaussian Process, respectively. Each
panel corresponds to the periodic or near-periodic solution marked with a red circle in the
bifurcation diagrams in Fig.5.

4.1. Deterministic case

The bifurcation diagrams of the different deterministic models of aeroe-
lastic flutter are shown in Figure 4. The crosses indicate limit cycles of the
unsteady physics-based model treated as the observed system. As per the
assumption of our modelling concept, we can identify a qualitatively cor-
rect reduced-order flutter model assuming a quasi-steady airflow using the
measured state variables of the system (heave, pitch and the corresponding
velocities) only. The bifurcation diagram of this model is indicated by the
thin curve in Fig. 4. While this model is qualitatively correct in the sense
that it has a bistable airspeed-range similar to the one of the observed sys-
tem, one can also observe, that the predicted branch is slightly off the limit
cycles captured in the ‘unsteady’ flutter model. In contrast, the UDE model
with a neural network with 2 hidden layers of 12-12 neurons each, with a
sigmoid activation function, as indicated by the thick branch, is capable to
capture the limit cycles almost perfectly.

As the difference between the physics-based model and the observed sys-
tem is relatively small and we do not consider any random perturbation to
the system either, even a fairly small-sized neural network provided satis-
factory results. This model was also robust against the possible issues one
may encounter during the training, i.e. we did not encounter the problem of
overfitting while the identified minimum (albeit we do not have proof that
it is the global one) always corresponded to a well-fitting model.

Arguably, this case with a relatively small quantitative error in the mech-
anistic model to compensate and no process noise is much simpler than a real
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Figure 7: Branches of periodic/near-periodic solutions in the deterministic and stochastic
flutter models as captured by the CBC algorithm. The orange curve indicates the vibration
amplitude of the Ornstein-Uhlenbeck process corresponding to the ‘unsteady’ flutter model
linearised around the trivial equilibrium.

experiment. Therefore, from a practical point of view it is also interesting
to investigate the system with added process noise.

4.2. Simulations with process noise

In the case where process noise is added to the numerical observed sys-
tem, we employed Gaussian Processes as universal approximators alongside
the physics-based part of the model. The presence of process noise poses
an additional challenge during the training procedure as the random per-
turbation results in near-periodic solutions instead of limit cycles, as would
be the case in a deterministic system. In practice, this effect is perceived
as a fluctuation in the vibration amplitude and frequency. The issue with
using neural networks for stochastic systems exhibiting such behaviours is
that, without any explicit condition to force the predicted trajectories to
be periodic or explicitly identify the noise in the trajectories in the train-
ing data, there is no clear distinction whether the observed near-periodic
trajectories are an inherent feature of the underlying deterministic system
or purely a consequence of the stochastic perturbation. This might result
in the deterministic neural network-based models yielding to near-periodic
oscillations instead of limit cycles. Gaussian Processes are affected by this
issue to a lesser degree as they handle the deterministic part of the model
and the stochastic perturbation separately by definition.

Figure 5 shows the branches of the identified limit cycles/near-periodic
solutions with an additive stochastic moment with standard deviations σ =
0, 0.02 and 0.04 using the model given in (18). The crosses correspond-
ing to the ‘measurement data’ indicate the average amplitude of the near-
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periodic solutions of the observed stochastic system, whereas the limit cycles
of the UDE model were obtained by numerical collocation considering the
deterministic part of the model only.

In the deterministic case (σ = 0), the Gaussian process-based model can
be fitted just as well to the data as it was shown with a neural network
while it still provides a reasonably accurate model for a mildly perturbed
system (see σ = 0.02 ). Nevertheless, as the noise level increases, the fitted
model becomes less accurate especially at lower vibration amplitudes where
the signal to noise ratio is worse. From this point of view, it is a particular
disadvantage of the Gaussian process-based models that they are fit directly
to the acceleration-data rather than the trajectories and; as such, they are
more severely affected by random perturbations (see Fig 6). This is the
reason why the model accuracy can quickly deteriorate while only a mild
perturbation can be observed in the heave and pitch time profiles.

While this problem might be alleviated by fitting the model based on the
trajectories, as for the neural networks, using leave-one-out cross-validation
[36], the Gaussian-Process-based models have another bottleneck as they do
not scale well with larger amounts of data or more input variables. Even
though the training procedure is still relatively fast on larger datasets, pre-
dictions are obtained slowly as the whole dataset is being used every time
the right-hand-side of the UDE is evaluated. As a result, one may find
it difficult to use the identified Gaussian-Process-based models for further
analysis. Moreover, obtaining an accurate fit can be an issue as hyperpa-
rameters belonging to local minima may be more frequently found for more
complex training data. Thus, we rather use neural network models to train
a UDE model on experimental data. A possible alternative to this approach
would be the use of sparse Gaussian Processes [34] which can eliminate the
issues caused by large datasets. The use of these structures however, is
beyond the scope of this paper.

It is worth mentioning, that the presence of process noise results in a de-
viation from the deterministic solution-branch in the underlying model itself
which is most prominent at lower vibration amplitudes. This can be best
observed by comparing the critical airspeeds at which the Hopf bifurcation
is detected for different noise levels in Fig. 5. In the deterministic case, the
Hopf bifurcation is approximately at 24 m/s whereas in the system where
the pitch moment has a standard deviation of σ = 0.04 the critical airspeed
is perceived around 23 m/s. This can be explained by fact that the noise-
excitation leads to a near-periodic oscillation around the stable equilibria
of the system [33]. This oscillation can be characterised by an Ornstein-
Uhlenbeck process [35], equivalent to the linearisation of the flutter model
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Figure 8: Bifurcation diagrams of the UDE model of aeroelastic flutter using a neural
network with 2 hidden layers of 48-48 neurons each with a sigmoid activation function,
against the training data from physical experiment. The left panel shows a case when
good fit to measurement data was achieved, whereas the right panel presents a bifurcation
diagram of a model corresponding to a local minimum of the objective function.

(18) around the equilibrium. In (see Fig. 7) the near-periodic vibration am-
plitudes captured by CBC are compared to the Ornsten-Uhlenbeck model
showing good agreement. Moreover, the perceived critical airspeed is very
close to the point where the amplitude predicted by the Ornsten-Uhlenbeck
model exceeds the amplitude of the unstable limit cycles of the deterministic
system.

5. Modelling an experimental observed system

5.1. Aeroelastic flutter

Φ

Ax

20 Hz

22 Hz

24 Hz

26 Hz

22.5 Hz

23 Hz
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Φ

f [Hz]

(a) (b)

Figure 9: The bifurcation diagrams used as training data, collected from the physical
nonlinear oscillator (Panels (a) and (b) show the same data in 2D and 3D, respectively).
The dataset with a narrow frequency range (22.5-23 Hz) is shown is green with empty
markers, while the blue curves and filled markers correspond to the wide frequency range
dataset (20-26 Hz)
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Figure 10: Bifurcation diagrams of the pure mechanistic and the UDE models against the
measurement data (narrow frequency-range dataset). In the UDE model, the mechanistic
part was augmented with a neural network of 2 hidden layers of 48-48 neurons each with
a sigmoid activation function.
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Figure 11: Bifurcation diagrams of the UDE and pure mechanistic models against the
measurement data (wider frequency-range dataset). In the UDE model, the mechanistic
part was augmented with a neural network of 2 hidden layers of 48-48 neurons each with
a sigmoid activation function.
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We also used the UDE model given in (13) of the aerofoil to model the
dynamics of a physical experiment with a wing profile in the wind tunnel
shown in the right panel of Fig. 2. The architecture of the model was the
same as in case of the numerical simulations, i.e. pitch and heave (and
their respective time derivatives) were assumed to be the measured state
variables while we considered everything else as the hidden dynamics of
the experiment. This problem proved to be too complex to be modelled
using Gaussian processes, as the size of the training dataset that adequately
represents the observed dynamics exceeds the size where these structures
are practical to use. As a result, predictions with Gaussian-Process-based
models get very costly computationally making the evaluation and further
use of the trained models infeasible. Thus, for the physical experiment, we
employ neural networks as machine learnable structures.

Similarly to the numerical case, we use time series data from the limit
cycles to train the neural networks. As explained in Section 4.2, it is a
strong requirement for the training data to comprise limit cycles, as neural-
network-based models are prone to replicate the near-periodic oscillations
observed in a system with random excitation. Thus, the measurement data
had to be pre-processed to generate quasi-deterministic, periodic time pro-
files from the otherwise noise-polluted measurement data. This was achieved
by Fourier-transformation and averaging over longer data-segments at each
measurement points. As a result, we generated 8 time-series of limit cycles
corresponding to different airspeeds, 4 solutions taken from the stable and
the unstable branches each.

The left panel of Fig. 8 shows the bifurcation diagram of the trained
UDE model which fits well to the measurement data. Unfortunately how-
ever, repeated attempts to train the same model starting with a different
initial guess of the neural network’s gains and biases on the same data, of-
ten resulted in poorly-fitting models as the training algorithm was prone to
converge to local minima of the objective function instead of the global one
(see e.g. the right panel of Fig. 8). The robustness of the training algorithm
could be improved by techniques such as drop-out or mini-batching and
presumably also by adding more data. Nevertheless, one may never fully
eliminate the sensitivity to the initial guess and choice of algorithm param-
eters. This highlights one of the main conclusions of our study; namely,
within the current framework, one should always check the adequacy of the
result rather than just accepting a trained UDE model.

One of the main weakness of the current training framework using the
DiffEqFlux.jl package is that by using forward simulations to generate the
predictions we never use the knowledge that the measured trajectories, used
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as training data, correspond to limit cycles. While the error measure, i.e.
the Euclidean distance between the observed and predicted trajectories is
adequate in a sense that this should be minimal if the prediction is accu-
rate, the approximation error may get amplified in certain cases, i.e. near
to an unstable limit cycle. Ultimately, the success of the training proce-
dure largely depends on the complexity of the problem and the ratio of the
known and hidden dynamics. The training procedure for systems with limit
cycles potentially could be made more robust if the training algorithm was
incorporated into a boundary-value problem solver rather than a simulation
of an initial value problem.

5.2. Nonlinear electrodynamical oscillator

The UDE model of the electrodynamic oscillator given in Eq. (19) is
trained on measurement data collected from the experimental rig shown in
Fig. 3. The steady-state limit cycles of the observed system were traced at
several forcing frequencies while the forcing amplitude was varied. Thus,
by the continuation of the S-shaped response curves, corresponding to the
individual frequencies, we obtained the response-surface shown in Fig. ??.
To assess the performance of the hybrid model, we consider two datasets,
one a with a narrow (22.5-23 Hz) and another with a wide frequency range
(20-26 Hz with an increment of 2 Hz) indicated by the green and blue curves,
respectively.

Figures 10 and 11 show the measured bifurcation diagrams against the
predictions with the UDE model and the bare physics-based model (with
the parameters identified using the system response at 24 Hz) for the narrow
and wide-band cases respectively. One can observe that the addition of the
neural network to the mechanistic model clearly results in a more accurate
prediction; however, the extent of the improvement is not consistent for the
two datasets.

In case of the narrow-frequency-range dataset, the UDE model fits very
well to the measurement data at 22.5 Hz and provides a considerably better
prediction for the amplitudes at 23 Hz too, even though there is still some
error in the estimation.

Notably, we have not found an UDE model showing similar performance
on the wide-frequency-range dataset as the extent of the remaining error be-
tween the measured bifurcation diagrams and the predictions is somewhat
larger than for the narrow-frequency-range dataset. Moreover, in this case,
in each effort to train the UDE model, we encountered the problem of overfit-
ting; i.e. the resulting hypersurface of the underlying function of the neural
network had large variations. This effect made the identified model difficult
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to handle. Also, we were unable to trace the limit cycles with a conven-
tional collocation-based method. We could overcome this issue by applying
the CBC technique, which is more robust against the random variations, on
the trained UDE model. The result of using CBC indicates that in spite of
the observed overfitting, the UDE model still makes an improvement in the
accuracy of the prediction. Even though the wide-frequency-range problem
seems to be slightly beyond the limits in terms of complexity our approach
can handle within the current training framework, the narrow-bandwith case
demonstrates the potential of the concept.

6. Conclusions

Our study exploited examples of using universal approximators along-
side mechanistic models of engineering systems with the aim to augment
the qualitatively correct models to reach quantitative accuracy. Our trials
demonstrate the potential and some challenges with the technique, under-
lining that the complexity of the problem and the quality of the training
data is the most important factor in the training procedure. This by itself
highlights the relevance of using hybrid models instead of differential equa-
tions with machine-learnable structures only (without a physics-based part),
since in general, the closer the qualitative models are to the ‘ground truth’
the easier it is to capture the ‘missing part’ of the dynamics with machine
learnable structures.

Nevertheless, in some cases we identified issues like converging to local
minima or overfitting during the training procedure. While it is not always
possible to identify the source of these issues, one can generally say that
problem complexity or insufficient training data plays an important part
in it. Therefore, further efforts need to be invested in finding what type
of training data could enhance the robustness of the training procedure.
Due to these issues, within the current framework, one should be critical
to the trained UDE models and an a-posteriori assessment is needed to
establish whether they are adequately represent the modelled system. In
other words, the training process is not robust enough for its results to be
blindly accepted.

Regarding the performance of the two different types of universal approx-
imators used in our analysis, we can generally conclude that while Gaussian
processes can perform better in systems with a mild noise load, neural net-
works were more versatile, as they could handle more complex problems as
well.
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Our study mainly focuses on exploring how the most common approaches
to train UDE models perform in replicating bifurcation diagrams of nonlin-
ear dynamical systems and identifying the challenges that may arise; yet,
one has to also admit that, arguably, there is still potential in developing
the training methods to optimise their performance for nonlinear dynamical
systems with limit cycles. From this point of view, trying to match the
right-hand side of the UDEs to the acceleration data, as done in the exam-
ples where Gaussian processes were used as the universal approximator, is
a somewhat naive approach as this does not reflect at all to the fact that
dynamical systems are considered. From this point of view, the simulation-
based approach of the DiffEqFlux.jl package in Julia, we deployed for the
neural-network-based models, is better. Yet, not even this method uses the
periodicity of the trajectories used as training data in a direct way. Instead,
predictions are provided as solutions of initial value problems assuming that
if the predictions are accurate the resulting model will also have a limit
cycle. In [28], it was demonstrated that collocation can make the training
algorithms more robust in retaining the qualitative features of the observed
dynamical system. Thus, implementing machine learning techniques us-
ing boundary-value problem solvers, better suited to find periodic solutions
than time-forward simulations, could potentially improve the robustness of
the fitting procedure in a significant way.

Nevertheless, our exploratory study has shown that using mechanistic-
machine learnable hybrid models for varying-parameter problems of non-
linear systems has clearly a potential to deliver accurate, low-dimensional
models of these systems.
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[21] M. Núñez, N. L. Barreiro, R. A. Barrio, and C. Rackauckas. Forecasting
virus outbreaks with social media data via neural ordinary differential
equations.

[22] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar,
D. Skinner, A. Ramadhan, and E. A. Universal differential equations
for scientific machine learning. Preprint, 2020.

[23] C. Rackauckas, R. Sharma, and B. Lie. Hybrid mechanistic + neu-
ral model of laboratory helicopter. In SIMS 2020: 61st International
Conference of Scandinavian Simulation Society, 2021.

[24] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics informed deep
learning (part i): Data-driven solutions of nonlinear partial differential
equations. J. Comput. Phys., 378:686–707, 2019. doi: 10.1016/j.jcp.
2018.10.045.

[25] A. Ramadhan, J. Marshall, A. Souza, G. L. Wagner, M. Ponnapati,
and C. Rackauckas. Capturing missing physics in climate model pa-
rameterizations using neural differential equations. Oct. 2020.

[26] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learn-
ing. The MIT Press, Cambridge, Massachusetts, 2006.

24



[27] L. Renson, J. Sieber, D. Barton, A. Shaw, and S. Neild. Numerical
continuation in nonlinear experiments using local gaussian process re-
gression. Nonlinear Dynamics, 98(4):2811–2826, 2019.

[28] E. Roesch, C. Rackauckas, and M. Stumpf. Collocation based train-
ing of neural ordinary differential equations. Statistical Applications in
Genetics and Molecular Biology, 20(2):37–49, 2021.

[29] T. Rudner, V. Fortuin, J. Teh, and J. Gal. On the connection between
neural processes andgaussian processes with deep kernels. In NIPS 2018
WorkshopFriday, December 7, 2018 — Palais des Congrès de Montréal,
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Appendix A. Coefficient matrices of the flutter model

Appendix A.1. Unsteady model

The mass matrix M in Eq. (10) is divided into a structural and an
aerodynamic part

M = Mst + Mae, (A.1)

where

Mst =

 m mw(b− xf ) 0
mw(b− xf ) IA 0

0 0 0

 , (A.2)

and

Mae =

 ρb2π −ρb3πa 0
−ρb3πa ρb4π(18 + a2) 0

0 0 1

 (A.3)

Similarly, the damping and stiffness matrices B and S are given in the same
form

B = Bst + Bae, (A.4)

where

Bst =

d 0 0
0 dt 0
0 0 0

 , Bae =

bae11 bae12 bae13
bae21 bae22 bae23
−1

b −(12 − a) (c2 + c4)
V
b

 , (A.5)

and

bae11 = 2πρbV (c0 − c1 − c3), bae12 = ρb2πV + 2πρb2V (
1

2
− a)(c0 − c1 − c3),

bae13 = 2πρV 2b(c1c2 + c3c4), bae21 = −2πρb2V (a+
1

2
)(c0 − c1 − c3),

bae22 = ρb3πV (
1

2
− a)− 2ρb3V π(

1

2
− a)(

1

2
+ a)(c0 − c1 − c3),

bae23 = −2πρb2V 2(a+
1

2
)(c1c2 + c3c4).

(A.6)
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The stiffness matrix can be expressed as

S = Sst + Sae, (A.7)

with

Sst =

s 0 0
0 st 0
0 0 0

 , Sae =

0 sae12 sae13
0 sae22 sae23
0 −V

b c2c4
V 2

b2

 , (A.8)

where

sae12 = 2πρbV 2(c0 − c1 − c3), sae13 = 2πρV 3c2c4(c1 + c3),

sae22 = −2πρb2V 2(
1

2
+ a)(c0 − c1 − c3),

sae23 = −2πρb2V 3(
1

2
+ a)c2c4(c3 + c1).

(A.9)

Appendix A.2. Quasi-steady airflow model

The coefficient matrices in the equation of motion of the 2 DoF flutter
model (see Eq. (13)) can be expressed as follows. The mass matrix Mred

reads
Mred = Mred,st + Mred,ae, (A.10)

where

Mred,st =

(
m mw(b− xf )

mw(b− xf ) IA

)
, (A.11)

and

Mred,ae =

(
ρb2π −ρb3πa
−ρb3πa ρb4π(18 + a2)

)
. (A.12)

The damping matrix is given by

Bred = Bred,st + Bred,ae, (A.13)

Bred,st =

(
d 0
0 dt

)
, Bred,ae =

(
2πρbV 2πρb2V (1− a)

−2πρb2V (a+ 1
2) −2aρb3V π(12 − a)

)
,

(A.14)
and whereas the stiffness matrix reads

Sred = Sred,st + Sred,ae, (A.15)

with

Sred,st =

(
s 0
0 st

)
, Sred,ae =

(
0 2πρbV 2

0 −2πρb2V 2(12 + a)

)
. (A.16)

and
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Appendix B. Tracing periodic solutions in the flutter model with
control-based continuation

The limit cycles, we use as training data, are tracked with the technique
of control-based continuation (CBC) for both the physical and numerical
simulations. As shown in previous studies [8], this method is fairly robust
against random perturbations. Thus, it can be used to survey the underlying
deterministic system in noise-polluted experiments.

CBC is based on applying a stabilising and non-invasive control to the
experimental system, such that the system converges to a periodic solution
and, by iterating the control target, the algorithm finds a limit cycle that is
also a solution of the open/loop (uncontrolled) system.

In case of the energy harvester experiments the open-loop system is sub-
ject to harmonic forcing, whereas the fluttering aerofoil is an autonomous
system. Hence, the period of the limit cycles in the flutter case is an addi-
tional unknown parameter. The algorithm used to track the limit cycles of
the physical nonlinear oscillator is described in detail in [8]. In this section,
we present the algorithm used for the numerical simulation of the fluttering
aerofoil. This is an extended version of the algorithm presented in [20] by
Lee et al., capable of finding limit cycles in autonomous system. However,
due to the limitations of the experimental rig, limit cycles are only tracked
for a number of fixed airspeeds while we implement a full continuation using
the airspeed as bifurcation parameter.

To stabilise the system at a steady-state limit cycle, a control force is
applied to the aerofoil

Fctrl = kp(ht(t)− h(t)) + kd(ḣt(t)− ḣ(t)), (B.1)

where ht(t) is the heave control target whereas kp and kd are the proportional
and derivative control gains. Thus, in the deterministic case, the equation
of motion (10) is extended by a forcing term in the right-hand-side

Mÿ + Bẏ + Sy + fNL(y) = F, (B.2)

with F = (Fctrl 0 0)T. To consider process noise, we apply the same
extension to the SDE in (18).

To consider a control target that is phase-locked to the self-excited vi-
bration of the system, the instantaneous phase, defined by

φ(t) = arctan
(
ḣ(t), ωh(t)

)
, (B.3)
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is used with ω denoting the measured angular frequency. Then, the control
target is considered as

ht(t) = A0t +A1t cos (φ(t)) , (B.4)

where A0t and A1t are the target static deflection and amplitude, respec-
tively. The time derivative of the instantaneous phase is approximated with
the help of the measured angular frequency as φ̇ ≈ −ω; thus, the time
derivative of the control target is given by

ḣt(t) = ωA1t sin (φ(t)) . (B.5)

Appendix B.1. Root-finding and continuation

If the control law in Eq. (B.1) is stabilising, the system settles at a steady
state periodic solution in the deterministic case, or a quasi-periodic solution
in the presence of process noise. This solution is considered in a similar form
to the control target

h(t) ≈ A0 +A1 cosφ(t). (B.6)

In case of the near-periodic solutions in the stochastic system, we aver-
age over several periods, and the solution given by average coefficients are
accepted as the steady-state periodic solution. If we find the control tar-
get coefficients A∗0t and A∗1t where the steady-state errors e0 = A0t − A0,
e1 = A1t −A1 yield to zero (or are below a defined tolerance), this solution
is accepted as a limit cycle in the open-loop system. While testing the al-
gorithm, we found that the fixed point iteration Ak+1

0t := Ak
0 was enough to

eliminate the error e0 in the static deflection; hence, we only consider the
error in the vibration amplitude e1 in continuation algorithm.

For the continuation of the branch of limit cycles, we consider the root-
finding problem in two variables, the target amplitude and the airspeed V

e1(A1t, V ) = A1t −A1(V ). (B.7)

We take advantage from the fact, that a unique limit cycle corresponds
to every vibration amplitude in the flutter model. Therefore, we assume that
Eq. (B.7) has a unique solution V ∗ for all target vibration amplitudes. As
in our case, the stochastic nature of the system may prohibit the implemen-
tation of a direct derivative-based (e.g. Newton-like) root-finding algorithm
for this problem, we make a mesh in airspeeds V such that it includes the
suspected solution Vmin = V0 < V1 < ... < Vn = Vmax. Then, we register
the corresponding steady-state vibration amplitudes A0

1, A
1
1, ... An

1 and fit a
3rd-order polynomial to these samples and root-finding is performed on this
surrogate model. After identifying a limit cycle, the continuation progresses
by incrementing/decrementing the target vibration amplitude A1t.
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