6 research outputs found

    Atividade antiinflamatória e neuroprotetora da Edaravona no córtex sensóriomotor primário de ratos adultos submetidos à isquemia focal experimental

    No full text
    Stroke is a neural disorder originated from blood flow decreasing or interruption, making inadequate energy supply in the region, thus promoting tissue damage. The stroke can be divided in hemorragic or ischemic. The ischemic stroke is more prevalent and can occur through thrombosis or embolism. The ischemic pathology has multiple interrelated events like excitotoxicity, peri-infarct depolarization, oxidative and nitrosative stress, inflammation and apoptosis. An element of fundamental importance in ischemic pathology is the microglial cell, whose activity is closely linked to the progression of environment harm. A therapeutic alternative in the treatment of stroke is a pyrazolone called Edaravone. This study evaluated the neuroprotective effect of Edaravone dose of 3mg/kg in primary sensorymotor cortex after focal ischemic lesion. Edaravone treated animals (N = 10) and animals treated with saline solution (N = 10) in the survival time of 1 and 7 days after the ischemic event was evaluated. Treatment whith edaravone showed by histopathological analysis with cresyl violet a reduction of 49% and 66% in infarct size in animals in survival time 1 and 7 days respectively. Immunohistochemistry studies for microglia/macrophages assets (ED1+) demonstrated a reduction in the presence of ED1+ cells in 35% and 41% survival times for 1 and 7 days, respectively. Neutrophils (MBS-1+) were reduced to 64% only in animals with survival times a day. Harmful patterns were assessed qualitatively and quantitatively. Data was tested by ANOVA with Tukey post hoc test. Differences were considered significant at p < 0,05.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorO acidente vascular encefálico (AVENC) é uma desordem neural iniciada a partir da redução ou interrupção do fluxo sanguíneo, tornando inadequada a demanda energética para a região, promovendo assim um dano tecidual. O AVENC é classificado em hemorrágico ou isquêmico. O AVENC isquêmico tem maior prevalência e pode ocorrer por trombose ou embolismo. A patologia isquêmica tem múltiplos eventos interrelacionados como excitotoxicidade, despolarização periinfarto, estresse oxidativo e nitrosativo, inflamação e apoptose. Um elemento de fundamental importância na patologia isquêmica é a célula microglial, cuja atividade está intimamente ligada à progressão do ambiente lesivo. Uma alternativa terapêutica no tratamento do AVENC é um pirazolona denominada Edaravona. O presente trabalho avaliou a o efeito neuroprotetor da Edaravona na dose de 3mg/kg no córtex sensóriomotor primário após lesão isquêmica focal. A indução isquêmica foi induzida através da administração de 40pM do peptídeo vasoconstritor endotelina 1 diretamente sobre o córtex sensóriomotor primário. Foram avaliados animais tratados com Edaravona (N=10) e animais tratados com Água Destilada (N=10) nos tempos de sobrevida 1 e 7 dias após o evento isquêmico. O tratamento com edaravona evidenciou através da análise histopatológica com violeta de cresila uma redução de 49% e 66% na área de infarto nos animais nos tempo de sobrevida 1 e 7 dias respectivamente. Os estudos imunohistoquímicos para micróglia/macrófagos ativos (ED1+) demostraram uma redução na presença de células ED1+ em 35% e 41% para os tempos de sobrevida 1 e 7 dias respectivamente. A redução na presença de neutrófilos (MBS-1+) foi significativa apenas nos animais com tempo de sobrevida de 24h onde se observou a redução em 56% na presença dessas células. A análise estatística foi feita por análise de variância com correção a posteriori de Tukey com p <0,05

    Activity of alkaloids from Aspidosperma nitidum against Leishmania (Leishmania) amazonensis

    No full text
    Federal University of Pará. Institute of Health Sciences. Postgraduate Program in Pharmaceutical Innovation. Belém, PA, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, BrasilFederal University of Pará. Institute of Biological Sciences. Postgraduate Program in Biology of Infectious and Parasitic Agents. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network. Belém, PA, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, BrasilFederal University of Pará. Institute of Biological Sciences. Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network. Belém, PA, BrazilFederal University of Ouro Preto. School of Pharmacy. Ouro Preto, MG, BrazilFederal University of Pará. Institute of Health Sciences. Postgraduate Program in Pharmaceutical Innovation. Belém, PA, BrazilFederal University of Pará. Institute of Biological Sciences. Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Oxidative Stress Research Laboratory. Belém, PA, BrazilFederal University of Pará. Institute of Health Sciences. Postgraduate Program in Pharmaceutical Innovation. Belém, PA, Brazil / Federal University of Pará. Institute of Biological Sciences. Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network. Belém, PA, BrazilThis study evaluated the morphological changes caused by fractions and subfractions, obtained from barks of Aspidosperna nitidum, against L. (L.) amazonensis promastigotes. The ethanolic extract (EE) obtained through the maceration of trunk barks was subjected to an acid–base partition, resulting the neutral (FN) and the alkaloid (FA) fractions, and fractionation under refux, yielded hexane (FrHEX), dichloromethane (FrDCL), ethyl acetate (FrACoET), and methanol (FrMEOH) fractions. The FA was fractionated and three subfractions (SF5-6, SF8, and SF9) were obtained and analyzed by HPLC–DAD and 1 H NMR. The antipromastigote activity of all samples was evaluated by MTT, after that, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the active fractions were performed. Chromatographic analyzes suggest the presence of alkaloids in EE, FN, FA, and FrDCL. The fractionation of FA led to the isolation of the indole alkaloid dihydrocorynantheol (SF8 fractions). The SF5-6, dihydrocorynantheol and SF-9 samples were active against promastigotes, while FrDCL was moderately active. The SEM analysis revealed cell rounding and changes in the fagellum of the parasites. In the TEM analysis, the treated promastigotes showed changes in fagellar pocket and kinetoplast, and presence of lipid inclusions. These results suggest that alkaloids isolated from A. nitidum are promising as leishmanicidal

    Hierarchical cluster analysis of three-dimensional reconstructions of unbiased sampled microglia shows not continuous morphological changes from stage 1 to 2 after multiple dengue infections in Callithrix penicillata

    No full text
    It is known that microglial morphology and function are related, but few studies have explored the subtleties of microglial morphological changes in response to specific pathogens. In the present report we quantitated microglia morphological changes in a monkey model of dengue disease with virus CNS invasion. To mimic multiple infections that usually occur in endemic areas, where higher dengue infection incidence and abundant mosquito vectors carrying different serotypes coexist, subjects received once a week subcutaneous injections of DENV3 (genotype III)-infected culture supernatant followed 24 hours later by an injection of anti-DENV2 antibody. Control animals received either weekly anti-DENV2 antibodies, or no injections. Brain sections were immunolabeled for DENV3 antigens and IBA-1. Random and systematic microglial samples were taken from the polymorphic layer of dentate gyrus for 3-D reconstructions, where we found intense immunostaining for TNFα and DENV3 virus antigens. We submitted all bi- or multimodal morphological parameters of microglia to hierarchical cluster analysis and found two major morphological phenotypes designated types I and II. Compared to type I (stage 1), type II microglia were more complex; displaying higher number of nodes, processes and trees and larger surface area and volumes (stage 2). Type II microglia were found only in infected monkeys, whereas type I microglia was found in both control and infected subjects. Hierarchical cluster analysis of morphological parameters of 3-D reconstructions of random and systematic selected samples in control and ADE dengue infected monkeys suggests that microglia morphological changes from stage 1 to stage 2 may not be continuous

    Behavioral and neuropathological changes after Toxoplasma gondii ocular conjunctival infection in BALB/c Mice

    No full text
    Brazilian Research Council - CNPq Grant No. 307749/2004-5 and 471077/2007-0, Fundação Amazonia de Amparo a Estudos e Pesquisas do Para - FAPESPA, ICAAF No. 039/2017, Pro-Reitoria de Pesquisa e Pós-graduação da Universidade Federal do Para - PROPESP Edital 2021-PIAPA; Coordenação de Aperfeicoamento de Pessoal de Nivel Superior - CAPES - Pro-Amazonia, Grant No. 3311/2013; and Programa de Apoio a Publicação Qualificada - PAPQ/PROPESP/UFPA.Universidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microscopia Eletrônica. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microscopia Eletrônica. Ananindeua, PA, BrasilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Toxoplasmose. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Toxoplasmose. Ananindeua, PA, BrasilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, BrazilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microscopia Eletrônica. Ananindeua, PA, BrasilMinistério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, BrasilUniversity of Oxford. Department of Pharmacology. Laboratory of Experimental Neuropathology. Oxford, UKUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brazil / Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Laboratório de Microscopia Eletrônica. Ananindeua, PA, BrasilUniversidade Federal do Pará. Hospital Universitário João de Barros Barreto. Instituto de Ciências Biológicas. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, BrazilOcular infection with Toxoplasma gondii causes toxoplasmosis in mice. However, following ocular infection with tachyzoites, the cause of the accompanying progressive changes in hippocampal-dependent tasks, and their relationship with the morphology and number of microglia, is less well understood. Here, in 6-month-old, female BALB/c mice, 5 μl of a suspension containing 48.5 × 106 tachyzoites/ml was introduced into the conjunctival sac; control received an equal volume of saline. Before and after instillation, all mice were subject to an olfactory discrimination (OD) test, using predator (cat) feces, and to an open-field (OF) task. After the behavioral tests, the animals were culled at either 22 or 44 days post-instillation (dpi), and the brains and retinas were dissected and processed for immunohistochemistry. The total number of Iba-1-immunolabeled microglia in the molecular layer of the dentate gyrus was estimated, and three-dimensional reconstructions of the cells were evaluated. Immobility was increased in the infected group at 12, 22, and 43 dpi, but the greatest immobility was observed at 22 dpi and was associated with reduced line crossing in the OF and distance traveled. In the OD test, infected animals spent more time in the compartment with feline fecal material at 14 and at 43 dpi. No OD changes were observed in the control group. The number of microglia was increased at 22 dpi but returned to control levels by 44 dpi. These changes were associated with the differentiation of T. gondii tachyzoites into bradyzoite-enclosed cysts within the brain and retina. Thus, infection of mice with T. gondii alters exploratory behavior, gives rise to a loss in predator's odor avoidance from 2 weeks after infection, increased microglia number, and altered their morphology in the molecular layer of the dentate gyrus

    Dengue-anticorpo melhorada gera uma resposta inflamatória acentuada CNS nos penicillata sagui Callithrix preto-adornado

    No full text
    Universidade do Estado do Pará. Curso de Graduação em Medicina. Centro de Ciências da Saúde. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade da Amazônia. Curso de Graduação em Biologia, Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Centro Nacional de Primatas. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Microscopia Eletrônica. Ananindeua, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Departamento de Microscopia Eletrônica. Ananindeua, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências da Saúde. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências da Saúde. Hospital Universitário João de Barros Barreto. Laboratório de Anatomia Patológica. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Ministério da Saúde. Secretaria de Vigilância em Saúde. Instituto Evandro Chagas. Ananindeua, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.Universidade Federal do Pará, UFPA. Instituto de Ciências Biológicas. Hospital Universitário João de Barros Barreto. Laboratório de Investigações em Neurodegeneração e Infecção. Belém, PA, Brasil.University of Oxford. Department of Pharmacology. Laboratory of Experimental Neuropathology. Mansfield Road, Oxford, United Kingdom.Severe dengue disease is often associated with long-term neurological impairments, but it is unclear what mechanisms are associated with neurological sequelae. Previously, we demonstrated antibody-enhanced dengue disease (ADE) dengue in an immunocompetent mouse model with a dengue virus 2 (DENV2) antibody injection followed by DENV3 virus infection. Here we migrated this ADE model to Callithrix penicillata. To mimic human multiple infections of endemic zones where abundant vectors and multiple serotypes co-exist, three animals received weekly subcutaneous injections of DENV3 (genotype III)-infected supernatant of C6/36 cell cultures, followed 24h later by anti-DENV2 antibody for 12 weeks. There were six control animals, two of which received weekly anti-DENV2 antibodies, and four further animals received no injections. After multiple infections, brain, liver, and spleen samples were collected and tissue was immunolabeled for DENV3 antigens, ionized calcium binding adapter molecule 1, Ki-67, TNFa. There were marked morphological changes in the microglial population of ADE monkeys characterized by more highly ramified microglial processes, higher numbers of trees and larger surface areas. These changes were associated with intense TNFa-positive immunolabeling. It is unclear why ADE should generate such microglial activation given that IgG does not cross the blood-brain barrier, but this study reveals that in ADE dengue therapy targeting the CNS host response is likely to be important

    Ethnobotany, phytochemistry, and bioactivity of the genus Turnera (Passifloraceae) with a focus on damiana—Turnera diffusa

    No full text
    corecore