934 research outputs found
A universal protocol to generate consensus level genome sequences for foot-and-mouth disease virus and other positive-sense polyadenylated RNA viruses using the Illumina MiSeq
BACKGROUND: Next-Generation Sequencing (NGS) is revolutionizing molecular epidemiology by providing new
approaches to undertake whole genome sequencing (WGS) in diagnostic settings for a variety of human and
veterinary pathogens. Previous sequencing protocols have been subject to biases such as those encountered
during PCR amplification and cell culture, or are restricted by the need for large quantities of starting material. We
describe here a simple and robust methodology for the generation of whole genome sequences on the Illumina
MiSeq. This protocol is specific for foot-and-mouth disease virus (FMDV) or other polyadenylated RNA viruses and
circumvents both the use of PCR and the requirement for large amounts of initial template.
RESULTS: The protocol was successfully validated using five FMDV positive clinical samples from the 2001 epidemic
in the United Kingdom, as well as a panel of representative viruses from all seven serotypes. In addition, this
protocol was successfully used to recover 94% of an FMDV genome that had previously been identified as cell
culture negative. Genome sequences from three other non-FMDV polyadenylated RNA viruses (EMCV, ERAV, VESV)
were also obtained with minor protocol amendments. We calculated that a minimum coverage depth of 22 reads
was required to produce an accurate consensus sequence for FMDV O. This was achieved in 5 FMDV/O/UKG isolates
and the type O FMDV from the serotype panel with the exception of the 5′ genomic termini and area immediately
flanking the poly(C) region.
CONCLUSIONS: We have developed a universal WGS method for FMDV and other polyadenylated RNA viruses.
This method works successfully from a limited quantity of starting material and eliminates the requirement for
genome-specific PCR amplification. This protocol has the potential to generate consensus-level sequences within a
routine high-throughput diagnostic environment
The interdisciplinary use of “overpressure”
Overpressure is a polysemic word that has a variety of meanings within and across different disciplines. This is likely to be a particular problem in analysis of geothermal resources, where reservoir engineers, volcanologists and structural geologists may each confidently use overpressure but mean different things. We suggest that, to avoid confusion, the term should be carefully and accurately defined whenever used, and ideally only used to mean fluid pressure in excess of hydrostatic pressure
Robots that can adapt like animals
As robots leave the controlled environments of factories to autonomously
function in more complex, natural environments, they will have to respond to
the inevitable fact that they will become damaged. However, while animals can
quickly adapt to a wide variety of injuries, current robots cannot "think
outside the box" to find a compensatory behavior when damaged: they are limited
to their pre-specified self-sensing abilities, can diagnose only anticipated
failure modes, and require a pre-programmed contingency plan for every type of
potential damage, an impracticality for complex robots. Here we introduce an
intelligent trial and error algorithm that allows robots to adapt to damage in
less than two minutes, without requiring self-diagnosis or pre-specified
contingency plans. Before deployment, a robot exploits a novel algorithm to
create a detailed map of the space of high-performing behaviors: This map
represents the robot's intuitions about what behaviors it can perform and their
value. If the robot is damaged, it uses these intuitions to guide a
trial-and-error learning algorithm that conducts intelligent experiments to
rapidly discover a compensatory behavior that works in spite of the damage.
Experiments reveal successful adaptations for a legged robot injured in five
different ways, including damaged, broken, and missing legs, and for a robotic
arm with joints broken in 14 different ways. This new technique will enable
more robust, effective, autonomous robots, and suggests principles that animals
may use to adapt to injury
Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway
Glucocorticoids (GCs) act through the glucocorticoid receptor (GR, also known as NR3C1) to regulate immunity, energy metabolism and tissue repair. Upon ligand binding, activated GR mediates cellular effects by regulating gene expression, but some GR effects can occur rapidly without new transcription. Here, we show that GCs rapidly inhibit cell migration, in response to both GR agonist and antagonist ligand binding. The inhibitory effect on migration is prevented by GR knockdown with siRNA, confirming GR specificity, but not by actinomycin D treatment, suggesting a non-transcriptional mechanism. We identified a rapid onset increase in microtubule polymerisation following GC treatment, identifying cytoskeletal stabilisation as the likely mechanism of action. HDAC6 overexpression, but not knockdown of αTAT1, rescued the GC effect, implicating HDAC6 as the GR effector. Consistent with this hypothesis, ligand-dependent cytoplasmic interaction between GR and HDAC6 was demonstrated by quantitative imaging. Taken together, we propose that activated GR inhibits HDAC6 function, and thereby increases the stability of the microtubule network to reduce cell motility. We therefore report a novel, non-transcriptional mechanism whereby GCs impair cell motility through inhibition of HDAC6 and rapid reorganization of the cell architecture
The combined effects of obesity and ageing on skeletal muscle function and tendon properties in vivo in men
Purpose: We investigated the combined impact of ageing and obesity on Achilles tendon (AT) properties in vivo in men, utilizing three classification methods of obesity.
Method: Forty healthy, untrained men were categorised by age (young (18–49 years); older (50–80 years)), body mass index (BMI; normal weight (≥18.5–6–9); high fat (>9). Assessment of body composition used dual-energy X-ray absorptiometry, gastrocnemius medialis (GM)/AT properties used dynamometry and ultrasonography and endocrine profiling used multiplex luminometry.
Results: Older men had lower total range of motion (ROM; −11%; P = 0.020), GM AT force (−29%; P < 0.001), stiffness (−18%; P = 0.041), Young’s modulus (−22%; P = 0.011) and AT stress (−28%; P < 0.001). All three methods of classifying obesity revealed obesity to be associated with lower total ROM (P = 0.014–0.039). AT cross sectional area (CSA) was larger with higher BMI (P = 0.030). However, after controlling for age, higher BMI only tended to be associated with greater tendon stiffness (P = 0.074). Interestingly, both AT CSA and stiffness were positively correlated with body mass (r = 0.644 and r = 0.520) and BMI (r = 0.541 and r = 0.493) in the young but not older adults. Finally, negative relationships were observed between AT CSA and pro-inflammatory cytokines TNF-α, IL-6 and IL-1β.
Conclusions: This is the first study to provide evidence of positive adaptations in tendon stiffness and size in vivo resulting from increased mass and BMI in young but not older men, irrespective of obesity classification
Association between exposure to environmental tobacco smoke and biomarkers of oxidative stress among patients hospitalised with acute myocardial infarction
Objective
To determine whether exposure to environmental tobacco smoke was associated with oxidative stress among patients hospitalised for acute myocardial infarction.<p></p>
Design
An existing cohort study of 1,261 patients hospitalised for acute myocardial infarction.<p></p>
Setting
Nine acute hospitals in Scotland.<p></p>
Participants
Sixty never smokers who had been exposed to environmental tobacco smoke (admission serum cotinine ≥3.0 ng/mL) were compared with 60 never smokers who had not (admission serum cotinine ≤0.1 ng/mL).<p></p>
Intervention
None.<p></p>
Main outcome measures
Three biomarkers of oxidative stress (protein carbonyl, malondialdehyde (MDA) and oxidised low-density lipoprotein (ox-LDL)) were measured on admission blood samples and adjusted for potential confounders.<p></p>
Results
After adjusting for baseline differences in age, sex and socioeconomic status, exposure to environmental tobacco smoke was associated with serum concentrations of both protein carbonyl (beta coefficient 7.96, 95% CI 0.76, 15.17, p = 0.031) and MDA (beta coefficient 10.57, 95% CI 4.32, 16.81, p = 0.001) but not ox-LDL (beta coefficient 2.14, 95% CI −8.94, 13.21, p = 0.703).<p></p>
Conclusions
Exposure to environmental tobacco smoke was associated with increased oxidative stress. Further studies are requires to explore the role of oxidative stress in the association between environmental tobacco smoke and myocardial infarction.<p></p>
Locomotor adaptability in persons with unilateral transtibial amputation
Background
Locomotor adaptation enables walkers to modify strategies when faced with challenging walking conditions. While a variety of neurological injuries can impair locomotor adaptability, the effect of a lower extremity amputation on adaptability is poorly understood. Objective
Determine if locomotor adaptability is impaired in persons with unilateral transtibial amputation (TTA). Methods
The locomotor adaptability of 10 persons with a TTA and 8 persons without an amputation was tested while walking on a split-belt treadmill with the parallel belts running at the same (tied) or different (split) speeds. In the split condition, participants walked for 15 minutes with the respective belts moving at 0.5 m/s and 1.5 m/s. Temporal spatial symmetry measures were used to evaluate reactive accommodations to the perturbation, and the adaptive/de-adaptive response. Results
Persons with TTA and the reference group of persons without amputation both demonstrated highly symmetric walking at baseline. During the split adaptation and tied post-adaptation walking both groups responded with the expected reactive accommodations. Likewise, adaptive and de-adaptive responses were observed. The magnitude and rate of change in the adaptive and de-adaptive responses were similar for persons with TTA and those without an amputation. Furthermore, adaptability was no different based on belt assignment for the prosthetic limb during split adaptation walking. Conclusions
Reactive changes and locomotor adaptation in response to a challenging and novel walking condition were similar in persons with TTA to those without an amputation. Results suggest persons with TTA have the capacity to modify locomotor strategies to meet the demands of most walking conditions despite challenges imposed by an amputation and use of a prosthetic limb
The relationship between cadence, pedalling technique and gross efficiency in cycling
Technique and energy saving are two variables often considered as important for performance in cycling and related to each other. Theoretically, excellent pedalling technique should give high gross efficiency (GE). The purpose of the present study was to examine the relationship between pedalling technique and GE. 10 well-trained cyclists were measured for GE, force effectiveness (FE) and dead centre size (DC) at a work rate corresponding to ~75% of VO2max during level and inclined cycling, seat adjusted forward and backward, at three different cadences around their own freely chosen cadence (FCC) on an ergometer. Within subjects, FE, DC and GE decreased as cadence increased (p < 0.001). A strong relationship between FE and GE was found, which was to great extent explained by FCC. The relationship between cadence and both FE and GE, within and between subjects, was very similar, irrespective of FCC. There was no difference between level and inclined cycling position. The seat adjustments did not affect FE, DC and GE or the relationship between them. Energy expenditure is strongly coupled to cadence, but force effectiveness, as a measure for pedalling technique, is not likely the cause of this relationship. FE, DC and GE are not affected by body orientation or seat adjustments, indicating that these parameters and the relationship between them are robust to coordinative challenges within a range of cadence, body orientation and seat position that is used in regular cycling
Diabetes mellitus and prostate cancer risk among older men: population-based case–control study
We investigate the relation between diabetes mellitus and risk of prostate cancer among older (age 65–79 years) men in a population-based case–control study of 407 incident histologically confirmed cases registered in the South Carolina Central Cancer Registry between 1999 and 2001 (70.6% response rate); controls were 393 men identified through the Health Care Financing Administration Medicare beneficiary file for South Carolina in 1999 (63.8% response rate). After adjusting for age, race, and prostate cancer screening in the past 5 years, a history of diabetes mellitus was associated with a reduced risk of prostate cancer (adjusted odds ratio (aOR)¼0.64; 95% confidence interval (CI)¼0.45, 0.91). The protective effect was stronger for those with complications associated with diabetes (aOR¼0.61; 95% CI¼0.42, 0.90) and for African-American men (aOR¼0.36; 95% CI¼0.21, 0.62). Additional research is needed to understand the biologic mechanisms by which diabetes may influence prostate cancer risk; genetic factors may play an important role in understanding this association
Stable isotope analysis provides new information on winter habitat use of declining avian migrants that is relevant to their conservation
Winter habitat use and the magnitude of migratory connectivity are important parameters when assessing drivers of the marked declines in avian migrants. Such information is unavailable for most species. We use a stable isotope approach to assess these factors for three declining African-Eurasian migrants whose winter ecology is poorly known: wood warbler Phylloscopus sibilatrix, house martin Delichon urbicum and common swift Apus apus. Spatially segregated breeding wood warbler populations (sampled across a 800 km transect), house martins and common swifts (sampled across a 3,500 km transect) exhibited statistically identical intra-specific carbon and nitrogen isotope ratios in winter grown feathers. Such patterns are compatible with a high degree of migratory connectivity, but could arise if species use isotopically similar resources at different locations. Wood warbler carbon isotope ratios are more depleted than typical for African-Eurasian migrants and are compatible with use of moist lowland forest. The very limited variance in these ratios indicates specialisation on isotopically restricted resources, which may drive the similarity in wood warbler populations' stable isotope ratios and increase susceptibility to environmental change within its wintering grounds. House martins were previously considered to primarily use moist montane forest during the winter, but this seems unlikely given the enriched nature of their carbon isotope ratios. House martins use a narrower isotopic range of resources than the common swift, indicative of increased specialisation or a relatively limited wintering range; both factors could increase house martins' vulnerability to environmental change. The marked variance in isotope ratios within each common swift population contributes to the lack of population specific signatures and indicates that the species is less vulnerable to environmental change in sub-Saharan Africa than our other focal species. Our findings demonstrate how stable isotope research can contribute to understanding avian migrants' winter ecology and conservation status
- …